Parsimony

Scientigts and philosophers often dlam that the parsmony (or smplicity) of atheory isreevant
to deciding whether the theory is true, or gpproximately true, or would make accurate predictions. Itis
acentra puzzlein the epistemology of science how this can be so. It isnot puzzling that people find
parsimonious theories aestheticadly attractive and easy to understand and manipulate. Reather, itisthe
epistemic value of paramony, not its pragmatic value, that requires eucidation.

Just as*paramony” is predicated of people when they are abstemious in the money they spend,
S0 theories are parsmonious when they are tight-fisted with respect to the entities, processes, or events
they postulate.  Thereis no cut-off separating theories that are parsmonious from theories that are
not; rather, the difference is amatter of degree. The fundamentd ideais comparative — one theory is
more parsimonious than another. For example, if one theory postulates causes A and B to explain
an obsarved effect E, while a second postulates A as causing E but makes no mention of B, it isthe
latter theory that is more parsmonious. One epistemically significance fegture of this differenceis not
far to seek —if A and B are mutudly independent, then the axioms of probability theory guarantee that
the conjunction (A and B) will be less probable than A. Does this mean that parsmony and probability
aways coincide? We will seein what follows that a number of philosophers have strenuoudy denied
this. But even in the case a hand, there is reason to be careful about this suggestion. The second
theory is agnostic aout the relevance of B. But now consider athird theory, which assertsthat A
causes E and denies that B does so. Thisthird theory is*atheistic” about B, not agnogtic.  Thisthird
theory is more parsmonious than thefirst.  However, it isnot a theorem of probability theory that (A
and -B) ismore probable than (A and B). The hypothesisthat thereis at least one cause of E ismore
probable than the hypothesis that there are at least two, but there iSno a priori reason to think that
exactly one ismore probable than exactly two. The principle of parsmony — ak.a. Ockham'srazor,
named for William of Ockham, the medieva philosopher who said that plurdity is not to be assumed
without necessity and that what can be done with fewer assumptions is done in vain with more (Wood
1996, pp. 20-22) — has an obvious link with probability when alogicaly stronger hypothesisis
compared with one that is smpler and logical wesker; however, when two theories are mutualy
incompatible, the connection is anything but obvious.

The giants of the Scientific Revolution frequently referred to the importance of parsmony and

itscognates. In De Revolutionibus Orbium Caelestium, Copernicus emphasizesthat his heliocentric
theory differs from Ptolemy’ s geocentric theory in that Ptolemy requires an independent mode for the
motion of each planet, whereas he, Copernicus, unifies the models for the different planets by including
acommon earth-sun component in each. Copernicus remarks that his approach “follow[s] Nature,
who producing nothing vain or superfluous often prefers to endow one cause with many effects (Kuhn,
pp. 176-179).” Newton (1686, p. 3) echoesthis sentiment in Principia when he sates as hisfirst
Rule of Reasoning in Philosophy that “we are to admit no more causes of naturd things than such asare
both true and sufficient to explain their gppearances. To this purpose the philosophers say that Nature
does nothing in vain, and moreisin vain when lesswill serve; for Neture is pleased with amplicity and
affects not the pomp of superfluous causes.” Leibniz (1686, p. 11) defended the use of a parsmony
criterion in scientific reasoning by apped to his doctrine that God created the best of al possble



worlds; our world is perfect because it is* a the same time the Smplest in hypotheses and the richest in
phenomena” For dl these thinkers, the methodological principle rests on an ontologica foundation.
We should use the principle of parasmony in our reasoning because nature issmple. And natureis
smple because God made it so.

With the faling away of divine design as an acceptable justification of methodologica principles,
avacuum agppeared in the foundations of scientific inference. If the judtification of the principle of
parsmony is not to be traced back to a parsmonious Creator, what could that justification be? Does
the judtification of the principle require any substantive assumptions about the naturd world? Or isthe
principle just part and parcel of what it meansto be “rationd,” which we are required to be no matter
what theworld islike? If the theologica account isthe thesis, its antithesis isthe ideathat the
principle of parsmony is purely methodologica. 1n between these two extremes, there is much room
for synthesis.

Local versus Global Accounts

Most atempts to explain the epistemic relevance of parsmony treat the problem globally.
They assume that if parsmony is epistemicaly reevant across arange of inference problems, that it
must have that relevance aways for the same reason. However, it is worth pondering the possibility
that the justification for using a principle of parsmony may vary from problem to problem. Perhaps
parsmony needs to be understood locally, not globaly (Sober 1990).

As an example, congder the longstanding use of parsmony as a criterion for inferring
phylogenetic rdationships in evolutionary biology (Sober 1988).  When we observe the Smilarities and
differences that characterize a set of gpecies, how are we to use these data to figure out which species
are dosaly reated and which are rdated only more distantly? A standard procedure is to find the
phylogenetic tree that requires the smallest number of changesin character Sate to explain the data.
This methodology assumes that the species are genedlogically related and proceeds to identify the most
parsimonious hypothesis concerning what that pattern of relatednessis. However, thereisaprior
question about phylogeny —why think that the species we observe share any common ancestors?
Perhaps each traces back to a separate origination event.

The role of parsmony in answering this question can be understood by examining Crick’s
(1968) argument that the near universdity of a single genetic code among the organisms now on earth is
evidence that they are dl genedogicaly related. Crick saysthat the genetic code we share is arbitrary
—it isone among alarge number of viable mappings of nucleotide triplets onto amino acids.  However,
once an organism uses a given code, there are likely to be ddeterious fithess consequencesiif it or its
descendants modify the code dready in place. Stabilizing selection then makes it highly probable that
descendants will use the same genetic code as their ancestors. These biologica assumptions (which
Crick summarizes with the phrase “frozen accident”) entall that the code' s universdity would be very
surprising if the organisms now on earth were not genedogicaly related (e.g., were products of 27
separate start-ups), but is precisaly what one should expect if al life traced back to a single progenitor.
Because of this difference, Crick concludes that the observed universdity strongly favors one
hypothesis over the other. Notice that Crick’s argument compares the likelihoods of two hypotheses:



P(the code is now universal * al current life traces back to a single progenitor) >
P(the code is now universal * current life traces back to 27 origind progenitors and no fewer).

Here likelihood is used in the technica senseintroduced by R.A. Fisher (1925); the likelihood of a
hypothesisisthe probahility it confers on observations, not the probability of the hypothesis, given the
observations. H'slikdlihood is P(O * H); its posterior probability isP(H * O). The law of likelihood
says that the observations differentialy support the hypothesis of higher likelihood (Hacking 1965,
Edwards 1971, Royall 1997).

The hypothesis thet life traces back to a Sngle progenitor is more parsmonious than the
hypothesisthat it traces back to 27 separate start-ups (since 1 < 27). Crick’ s argument thus provides
an example in which the principle of parasmony has alikdihood judtification. However, the connection
of likelihood and parsmony in thisinstance depends on specificaly biologica assumptions about the
genetic code— that it is arbitrary and thet it is subject to stabilizing sdlection. If parasmony hasa
likelihood rationde in inference problems that arise in other sciences, different empirica assumptions
will be required to show that thisisso. But more importantly, there seem to be problemsin which
parsmony cannot be judtified in terms of likelihood; in these problems, likelihood and parsmony are
actudly at odds with each other.

Theinferentia task of curve-fitting provides an example. Consider the following experiment.
Y ou put aseded pot on the sove. The pot has athermometer attached to it aswell as adevice that
measures how much pressure the gas ingde exerts on the walls of the pot. Y ou hest the pot to various
temperatures and observe the resulting pressure. Each temperature reading with its associated pressure
reading can be represented as a point in the coordinate system depicted in the accompanying figure.
The problem is to use these observations to decide what the genera relationship is between
temperature and pressure for thissystem.  Each hypothesis about this generd relationship takes the
form of acurve. Which curveis mogt plausble, given the observations?
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One factor that scientists attend to is goodness-of-fit. A curve that comes close to the data fits
them better than a curve that is more distant. |If goodness-of-fit were the only relevant consideration,
scientists would adways choose curves that pass exactly through the data points. They do not do this
(and even if they did, the question would remain of how they choose among the infinity of curves that fit
the data perfectly). Another consideration gpparently influences their decisions, and thisis smplicity.
Extremely bumpy curves are often thought to be complex, whereas smoother curves are often thought
to be smpler. Scientists sometimes rgject an extremely bumpy curve that fits the data perfectly in favor
of asmoother curve that fitsthe dataalittle lesswell. Scientists care about goodness-of-fit and
amplicity; both congderations influence how they choose curvesin thelight of data. What is more,
these two desiderata are in conflict -- a sufficiently complex curve will fit the data perfectly, whereas a
sampler curve will often fall to do this. Increasing smplicity typicaly involves reducing goodness-of-fit.

A curve represents a deterministic relationship between temperature and pressure; it maps x-
vaues onto unique y-values. However, a curve plus an error distribution represents a probabilistic
relationship — each x-valueis associated with a distribution of possible y-vaues, each with its own
probability (dendty). Inour experiment, the latter conception is more plausible, snce the data are the
joint product of the true underlying relationship of temperature and pressure and the measurement
errors introduced by the imperfections of the thermometer and the pressure gauge. A standard model
of error effects a connection between goodness-of-fit and likelihood — if one curve fits the data better
than another, then the former confers a higher probability on the data. A draight line will have alower
likelihood, given the data set depicted in the figure, than a sufficiently complex curve that passes exactly
through each datapoint. Thus, even if parsmony has alikelihood rationde in Crick’ s argument,
amplicity and likdihood are gpparently in conflict in the context of curve-fitting.

Simplicity and Parsimony

It s;ems naturd to say that curves differ in their amplicity. But what would it mean to say that
they differ in paramony? Paramony involves paucity of postulation,. but how does the idea of
abstemiousness apply in the context of curve-fitting? Curves are visua representations of equations.
For example, adraight line is arepresentation of an equation that hasthe form

(LIN) y=a+bx

and a parabolais a representation of an equation that has the form

(PAR) y =a+ bx + cx,

where x and y are the independent and dependent variables, and a, b, and ¢ are adjustable
parameters. |nsuch equations, the adjustable parameters represent existentia quantifiers —for
example, (LIN) saysthat there exist vaduesfor aand b suchthat y = a+ bx. It may seem, therefore,

that (LIN) is more parsmonious than (PAR) because the former makes two existence claims, whereas
the latter makesthree. This point pertainsto (LIN) and (PAR), not to a specific straight lineand a



gpecific parabola (an important distinction, which will come up again). Do smplicity and parsmony in
thelr vernacular meanings dways come to the same thing? The accounts described in what follows
draw no ditinction between them.

Bayesianism
Bayesaniam is not the same as Bayes s theorem. The theorem says that the conditiona
probability P(H * O) -- the probability of H, given O — isafunction of three other quantities:

P(H * O) = P(O * H)P(H)/P(O).

The theorem is a consequence of the standard definition of conditiona probability — P(H * O) = P(H
and O)/P(O). Bayesanism isa philosophica position, not amathematicd truth; in its srongest form it
assartsthat the epistemic notion of plausbility can be understood in terms of the mathematical concept
of probability and, furthermore, that al the epistemic concepts that bear on empirica inquiry can be
understood in terms of the probabilistic relationships described by Bayes s theorem. A double
gpplication of this theorem yid ds the following comparative principle:

P(H, *O) > P(H, *O) if and only if P(O *H,)P(H,) > P(O * H,)P(H,).

This biconditional makesit clear that there are exactly two ingredients that Bayesianism getsto usein
explaning how parsmony can make one hypothess more plausible than another in the light of a set of
observations. If parsmony influences plausihility, it must do so viathe prior probabilities or viathe
likelihoods (or both). If the rlevance of smplicity cannot be accommodated in one of these two ways,
then e@ther amplicity is episemicaly irrdevant or (strong) Bayesianism is mistaken. As noted previoudy
in connection with the curve-fitting problem, likelihood can be maximized by making on€e' s hypothes's
aufficiently complex; this ssems to leave the Bayesan only one dternative -- if smplicity in such cases
influences ahypothess plausibility, it must do so because smpler theories have higher prior
probabilities. Thisled Jeffreys (1957) to introduce asimplicity postulate, according to which the
complexity of an equation is measured by summing the number of varigbles, exponents, and parameters
it contains. Thisamplicity ordering isthen said to provide an ordering of the hypotheses' prior
probabilities.

Popper (1959) pointed out that this postulate is incompatible with the axioms of probability. It
assigns (LIN) a higher prior probability than (PAR), but thisisimpossble, snce (LIN) entalls (PAR).
Howson (1988) replied that this problem can be evaded by gtipulating that the parameters in a model
have nonzero values. Instead of comparing (LIN) and (PAR), we are to compare (LIN*) and (PAR*)
(which stipulate that ab,c O 0); these models are digoint, not nested, so assigning the former a higher
prior probability is congstent with the axioms of probability. Two new questions now arise. Thefirst
concerns why we should ignore the origina problem of comparing (LIN) and (PAR). Should we say
that these two models are not in competition because they are compatible? If so, scientific practice
needs to change, since scientists often compare nested models. The second question concerns why
(LIN*) should be assigned a higher prior probability than (PAR*). Why think that c=0 is more



probable than cO0? If probabilities are merely subjective degrees of belief, it is not to be denied that
someone might have greater confidence in the hypothesisthat c=0. But it is puzzling why, in the
absence of evidence, one should fed thisway. If asharp pinisdropped on aline amile long, would
you bet that the pin will land exactly a the beginning of the line, or that it will land somewhere dse? In
the absence of information concerning how the pinis dropped, it is hard to see why you should bet on
the former option. Y, thisis precisay what Jeffreys smplicity postulate recommends.

Another problem with the smplicity postulate — one that has to do with its completeness, not its
correctness—isthat it imposes an ordering of prior probabilities without providing specific values. This
isimportant in inference problems where more complex hypotheses have higher likdihoods. If H,; has
the higher likelihood and H, has the higher prior, which of them has the higher posterior probability?
The question of how smplicity trades off againg likelihood requires more than a smplicity ordering.

Although Jeffreys held out no hope of getting likelihood and parsmony to coincide, later
Bayesans saw away to reopen the question. To grasp their ides, it isimportant to attend to the
difference between models (which contain at least one adjustable parameter) and specific hypotheses
(which contain none). (LIN) isamodd, but “y= 2 + 3x” isnat; it isa gpecific linear hypothess. In
effect, amodel isadigunction of specific hypotheses. When it was noted earlier that a sufficiently
complex equation will fit the data better than a smpler equation, the point pertains to specific
hypotheses. But what would it mean to talk about the likelihoods of models? Itisclear how “y =2+
3X" probabilifies the data (once an error distribution is specified). But what probability does (LIN)
confer on the data? The answer isthat the likelihood of (LIN) isthe average likdihood of the set of
draight lines(i = 1,2, ...):

P(Data* LIN] = E; P(Data* draight linei)P(straight linei * LIN).

The firgt term in this summation makes sense, but what are we to make of the second? If the relation
between temperature and pressure in our exampleislinear, what probabilities do the different specific
linear hypotheses have? Schwarz (1978) approached this problem by thinking about the ratio of the
average likelihoods of two modds, using the assumption that there is aflat, uniform digtribution over
parameter vauesin each model. He derived the following result,

which cameto be known asthe Bayesian information criterion (BIC):

Log[P(Data* Model M)] . Log{P[Daa* L(M)]} - (k/2)Log(N).

Here L(M) isthe likeliest member of model M, N is the number of data, and k is the number of
parametersin M. Notice that BIC includes a pendty term for complexity. If the best-fitting Sraight line
and the best-fitting parabola fit the datain the figure about equaly well, (PAR) will have the lower
edimated average likelihood because it is more complex. Complexity is reevant to estimating the
average likelihoods of models, so Jeffreys recourseto priorsin his smplicity postulate is nat, it turns
out, the only Bayesian gpproach to the problem.

One virtue of Schwarz s andysisisthat it avoids the criticism aready noted that it seems
arbitrary and implaugible, if not contradictory, to assgn smpler models higher prior probabilities



(nonetheless, questions can be raised about the assumed flat prior distribution of the vaues a parameter
might havein amode). Ancther virtue isthat BIC specifies an exact quantitative rule for trading off
amplicity and the likelihood of L(M); it describes how much of again in oneisrequired for agiven loss
in the other, if there isto be a net improvement in the mode’ s estimated average likelihood. However,
thereisafly in the ointment. SchwarZ' s derivation usesimproper priors (i.e., priorsthat do not sum to
unity) in such away that his derivation is not invariant under reparameterization (Forster and Sober
1994). Subsequent Bayesian work derives BIC so asto avoid this defect; the strategy is to use some
of the datato transform theinitia, improper, priorsinto proper posteriors, after which the rest of the
data are taken into account to compute the final, average, likelihood. For further discussion see
Wasserman (2000).

Popper and Falsifiability

Popper (1959) proposed a demarcation criterion that separates scientific from nonscientific
daements — the former are fadfiable. A fasfiable satement is one that is incompatible with afinite
conjunction of observation statements. Fasfiable statements don't have to be fase; rather, they have
the nice property that observation can disprove themiif, in fact, they are untrue.

Just asfadfiability separates stience from nonscience, so degree of fagfiability distinguishes
some scientific satements from others. The (LIN) mode can be fasified by three data points, but not
by any smdler number. A single data point, or any pair of them, can be supplied with astraight line that
passes through them exactly. (PAR), on the other hand requires at least four data points to be fasified.
Thismeansthat (LIN) is more falsfiable than (PAR). Popper saw this as the key to understanding
amplicity in science. Smpler theories are easier to fasfy; they take less data to show thet they are
fdse, if indeed they are. Popper turns Jeffreys amplicity postulate on its head; whereas Jeffreys thinks
that smpler theories are more probable, Popper thinks that smplicity goeswith grester content —
ampler theories say more, and hence are more im probable.

It is clear that hypotheses that are more falsfiable have a pragmatic virtue —it is easier for usto
prove them fase if indeed they are. The principa hesitation that philosophers have had with Popper’s
andyssisthat it fails to account for parsmony’s epistemic significance. Why should we base our
predictions on Smpler models, rather than on more complicated models that fit the data equaly well? It
is here that Popper digns himsdlf with the skeptic and in opposition to the Bayesian. We have no
assurance that our best hypotheses are true, or even probably true. All we can say isthat they so far
have evaded our best attempts to disprove them. Simplicity provides no guarantee of truth or of
probable truth for the smple reason that nothing does.

There are further problems with Popper’s account of smplicity. Firgt, dthough it entails that
(LIN) issmpler than (PAR), it does not have this consequence when we compare a specific straight
line and a specific parabola. Each can be fasfied by asingle data point, so they are equdly fasfiable;
this means that Popper must say that they are equaly smple. 1n addition, Popper’s notion of degrees
of fagfiability isrestricted to hypotheses that have deductive consequences (perhaps in conjunction
with auxiliary assumptions) about observations. If the hypotheses in question only confer probakilities
on the data, they are not falsfiable. Since observation isvirtualy dways subject to error, thisisalarge

gap in Popper’ stheory.



Akaike and Model Selection

The Bayesian approach to modd sdection is not the only gamein town. Before Schwarz
(1978) proved his result, Akaike (1973) provided an aternative trestment (see aso Sakamoto et al.
1986 and Burnham and Anderson 1998). In fact, Akaike s contribution was two-fold:  he described a
god for modd sdection, predictive accuracy, and he proved atheorem concerning how the
predictive accuracy of amodel can be estimated (Forster and Sober 1994).

How might amode like (LIN) be used to make a prediction about the pressure in our pot, if
we bring the pot to a certain temperature? A specific linear hypothesis, such as*y = 2 +3x,” makesa
prediction about the y-vaues that will be associated with newly observed x-vaues, but what does
(LIN) tell usto expect? The answer isthat (LIN) makes predictions via atwo step-process. Firg, one
uses old data to find the maximum likelihood estimates of the parametersin (LIN); then one usesthis
fitted modd to predict new data. Thus, from the old dataand (LIN), one obtains L(LIN), the likeliest
member of (LIN), and it isL(LIN) that makes a definite prediction about new data

How well will L(LIN) do in predicting new data? That depends, of course, on the true
underlying reation of temperature and pressure. In addition, since different data sets drawn from the
same underlying distribution may differ; L(LIN) may make fairly accurate predictions about some and
rather inaccurate predictions about others. Because data sets may vary, it makes sense to define the
predictive accuracy of amode as its average performance across multiple data sets.

If maximizing predictive accuracy isthe god, how isthis god to be achieved? How areweto
tell whether amodd will make accurate predictions about new data, given just the single data set we
have & hand? If we amply find the model that bext fits the data, we will usudly opt for afairly complex
moded. Working scientists know from practical experience that a complex modd fitted to old data
often does a poor job predicting new data; in such cases, the modd is said to overfit the data
Sometimes asmpler model, though it fits the old datalesswell, will do a better job predicting new
data Akake s (1973) theorem provides amathematica explanation of thisfamiliar fact. It says.

An unbiased estimate of the predictive accuracy of model M . Log-P[Data* L(M)] - k.

One obtains the log-likelihood of the best-fitting member of the model, and then subtracts k, where k is
the number of adjustable parameters in the modd; k is a pendty for complexity. This estimate is termed
the model’ s AIC (Akake information criterion) score.  Forster and Sober (1994) recommend that the
estimate be represented per datum —i.e., that the right-hand side be multiplied by /N, where N isthe
number of data; this helps diffuse the criticism that AIC is satisticdly inconsstent (Forster 2002).
Although it isintuitive to think of Akaike s framework in the context of curvefitting, it and other modd
selection criteria goply to afar larger range of inference problems, including ones that arise in causd
modeling (Forster and Sober 1994).

Akake stheorem is atheorem, so it isimportant to attend to the assumptions that go into its
proof. Fird, thereisa“uniformity of nature’ assumption, which hastwo parts. It saysthat the old and
new data sets described in the definition of predictive accuracy are drawn from the same underlying
digtribution. It ds0 assumes that the x-vaues sampled in different data sets are drawn from asingle
distribution; for this reason, Forster (2000) describes AIC as addressing the problem of interpolation;
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the mode sdlection criterion appropriate for extrapolation is not addressed by Akaike' s theorem.
The proof of Akaike s theorem aso requires anormality assumption; roughly, this says that repeated
estimates of a parameter in amodd form anorma distribution.

What does it mean to say that AIC isunbiased? [If your bathroom scale is unbiased, it may
give different readings of what you weigh, but the average of these must be your true weight. If the
scaeis unbiased, S0 isthe procedure of adding or subtracting 50% of what it says, depending on the
result of afair cointoss. This second estimation procedure dso is centered on the true vaue, but it has
higher variance than the one that just takes the scal€ sreading at face value. Smilarly, the fact that AIC
provides an unbiased estimate of amode’ s predictive accuracy
leaves open whether its estimates have minimum variance. Furthermore, it isnot clear that lack of bias
should be regarded as a necessary condition on an acceptable estimator. Suppose your scae has very
low variance, but is dightly biased; on average, it reads alittle too high or alittle too low (you don't
know which). Would you decline to use this scale, if the dternative isto use ascde
that is unbiased but has enormous variance?

AIC and BIC are often treated as competitorsin the mode sdlection literature. Thisis odd,
since the two criteria were derived as solutions for different problems. BIC estimates average
likelihood; AlC estimates predictive accuracy. This does not mean that they cannot be consdered as
possible solutions to the same problem; however, to do so involves wrenching one of them fromits
natural conceptua home. Forster (2002) describes a set of smulationsin which AIC does a better job
edimating predictive accuracy in some circumstances, while BIC
does better in others. If one knew in advance where the problem one wishes to solve is located in
parameter space, such smulations may indicate which model selection criterion to use. However, the
sad fact of the matter is that one often does not know enough about a problem’ s factua setting for this
to be possible.

The Akaike framework and criterion have important implications for the debate concerning
reglism, empiriciam, and insrumentalism. It often turns out that amode known to be fase has a higher
AIC score than amode known to betrue. This meansthat the god of finding modelsthat are
predictively accurate differs from the god of finding moddsthat aretrue. If redism mantains that the
god of scienceisto find theories that are true, and empiricism maintains that the god of scienceisto
find theories that are empirically adequate (Van Fraassen 1980), then Akaike' s framework and
theorem open the door to athird possbility. Insrumentalism, shorn of the faulty philasophy of language
that led it to deny that theories have truth vaues, becomes an option worth exploring (Sober 2002).
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