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Abstract 

Part I discusses the conceptual foundations of general intelligence as a discipline, orienting it within 
the Integrated Causal Model of Tooby and Cosmides.  Part II constitutes the bulk of the paper and 
discusses the functional decomposition of general intelligence into a complex supersystem of 
interdependent internally specialized processes, and structures the description using five successive 
levels of functional organization:  Code, sensory modalities, concepts, thoughts, and 
deliberation.  Part III discusses probable differences between humans and AIs and points out several 
fundamental advantages that minds-in-general potentially possess relative to current evolved 
intelligences, especially with respect to recursive self-improvement.  

1: Part I: Foundations of general intelligence 

What is intelligence?  In humans, intelligence is a brain with a hundred billion neurons and a 
hundred trillion synapses; a brain in which the cerebral cortex alone is organized into 52 
cytoarchitecturally distinct areas per hemisphere.  Intelligence is not the complex expression of a 
simple principle; intelligence is the complex expression of a complex set of principles.  Intelligence is 
a supersystem composed of many mutually interdependent subsystems - subsystems specialized not 
only for particular environmental skills but for particular internal functions.  The heart is not a 
specialized organ that enables us to run down prey; the heart is a specialized organ that supplies 
oxygen to the body.  Remove the heart and the result is not a less efficient human, or a less 
specialized human; the result is a system that ceases to function.  

Why is intelligence?  The cause of human intelligence is evolution - the operation of natural selection 
on a genetic population in which organisms reproduce differentially depending on heritable variation 
in traits.  Intelligence is an evolutionary advantage because it enables us to model, predict, and 
manipulate reality.  Evolutionary problems are not limited to stereotypical ancestral contexts such as 
fleeing lions or chipping spears; our intelligence includes the ability to model social realities 
consisting of other humans, and the ability to predict and manipulate the internal reality of the 
mind.  Philosophers of the mind sometimes define "knowledge" as cognitive patterns that map to 
external reality [Newell80], but a surface mapping has no inherent evolutionary utility.  Intelligence 
requires more than passive correspondence between internal representations and sensory data, or 
between sensory data and reality.  Cognition goes beyond passive denotation; it can predict future 
sensory data from past experience.  Intelligence requires correspondences strong enough for the 
organism to choose between futures by choosing actions on the basis of their future 
results.  Intelligence in the fully human sense requires the ability to manipulate the world by 
reasoning backward from a mental image of the desired outcome to create a mental image of the 



 

necessary actions.  (In Part II, these ascending tests of ability are formalized as sensory, predictive, 
decisive, and manipulative bindings between a model and a referent.)  

Understanding the evolution of the human mind requires more than classical Darwinism; it requires 
the modern "neo-Darwinian" or "population genetics" understanding of evolution - the Integrated 
Causal Model set forth by [Tooby92].  One of the most important concepts in the ICM is that of 
"complex functional adaptation".  Evolutionary adaptations are driven by selection pressures acting 
on genes.  A given gene's contribution to fitness is determined by regularities of the total 
environment, including both the external environment and the genetic environment.  Adaptation 
occurs in response to statistically present genetic complexity, not just statistically present 
environmental contexts.  A new adaptation that requires the presence of a previous adaptation 
cannot spread unless the prerequisite adaptation is present in the genetic environment with sufficient 
statistical regularity to make the new adaptation a recurring evolutionary advantage.  Evolution uses 
existing genetic complexity to build new genetic complexity, but evolution exhibits no 
foresight.  Evolution does not construct genetic complexity unless it is an immediate advantage, and 
this is a fundamental constraint on accounts of the evolution of complex systems.  

Complex functional adaptations - adaptations that require multiple genetic features to build a 
complex interdependent system in the phenotype - are usually, and necessarily, universal within a 
species.  Independent variance in each of the genes making up a complex interdependent system 
would quickly reduce to insignificance the probability of any phenotype possessing a full functioning 
system.  To give an example in a simplified world, if independent genes for "retina", "lens", "cornea", 
"iris", and "optic nerve" each had an independent 20% frequency in the genetic population, the 
random-chance probability of any individual being born with a complete eyeball would be 1 in 3125.  

Natural selection, while feeding on variation, uses it up [Sober84].  The bulk of genetic complexity in 
any single organism consists of a deep pool of panspecies complex functional adaptations, with 
selection pressures operating on a surface froth of individual variations. The target matter of Artificial 
Intelligence is not the surface variation that makes one human slightly smarter than another human, but rather the 
vast store of complexity that separates a human from an amoeba.  We must avoid distraction by the surface 
variations that occupy the whole of our day-to-day social universe.  The differences between humans 
are the points on which we compete and the features we use to recognize our fellows, and thus it is 
easy to slip into paying them too much attention.  

A still greater problem for would-be analysts of panhuman complexity is that the foundations of the 
mind are not open to introspection.  We perceive only the highest levels of organization of the 
mind.  You can remember a birthday party, but you cannot remember your hippocampus encoding 
the memory.  

Is either introspection or evolutionary argument relevant to AI?  To what extent can truths about 
humans be used to predict truths about AIs, and to what extent does knowledge about humans 
enable us to create AI designs?  If the sole purpose of AI as a research field is to test theories about 
human cognition, then only truths about human cognition are relevant.  But while human cognitive 
science constitutes a legitimate purpose, it is not the sole reason to pursue AI; one may also pursue 
AI as a goal in its own right, in the belief that AI will be useful and beneficial.  From this perspective, 
what matters is the quality of the resulting intelligence, and not the means through which it is 
achieved.  However, proper use of this egalitarian viewpoint should be distinguished from historical 



 

uses of the "bait-and-switch technique" in which "intelligent AI" is redefined away from its intuitive 
meaning of "AI as recognizable person", simultaneously with the presentation of a AI design which 
leaves out most of the functional elements of human intelligence and offers no replacement for 
them.  There is a difference between relaxing constraints on the means by which "intelligence" can 
permissibly be achieved, and lowering the standards by which we judge the results as 
"intelligence".  It is thus permitted to depart from the methods adopted by evolution, but is it wise?  

Evolution often finds good ways, but rarely the best ways.  Evolution is a useful inspiration but a 
dangerous template.  Evolution is a good teacher, but it's up to us to apply the lessons 
wisely.  Humans are not good examples of minds-in-general; humans are an evolved species with a 
cognitive and emotional architecture adapted to hunter-gatherer contexts and cognitive processes 
tuned to run on a substrate of massively parallel 200Hz biological neurons.  Humans were created 
by evolution, an unintelligent process; AI will be created by the intelligent processes that are humans.  

Because evolution lacks foresight, complex functions cannot evolve unless their prerequisites are 
evolutionary advantages for other reasons.  The human evolutionary line did not evolve toward 
general intelligence; rather, the hominid line evolved smarter and more complex systems that lacked 
general intelligence, until finally the cumulative store of existing complexity contained all the tools 
and subsystems needed for evolution to stumble across general intelligence.  Even this is too 
anthropocentric; we should say rather that primate evolution stumbled across a fitness gradient 
whose path includes the subspecies Homo sapiens sapiens, which subspecies exhibits one particular 
kind of general intelligence.  

The human designers of an AI, unlike evolution, will possess the ability to plan ahead for general 
intelligence.  Furthermore, unlike evolution, a human planner can jump sharp fitness gradients by 
executing multiple simultaneous actions; a human designer can use foresight to plan multiple new 
system components as part of a coordinated upgrade.  A human can take present actions based on 
anticipated forward compatibility with future plans.  

Thus, the ontogeny of an AI need not recapitulate human phylogeny.  Because evolution cannot 
stumble across grand supersystem designs until the subsystems have evolved for other reasons, the 
phylogeny of the human line is characterized by development from very complex non-general 
intelligence to very complex general intelligence through the layered accretion of adaptive 
complexity lying within successive levels of organization.  In contrast, a deliberately designed AI is 
likely to begin as a set of subsystems in a relatively primitive and undeveloped state, but nonetheless 
already designed to form a functioning supersystem1.  Because human intelligence is evolutionarily 
recent, the vast bulk of the complexity making up a human evolved in the absence of general 
intelligence; the rest of the system has not yet had time to adapt.  Once an AI supersystem possesses 
any degree of intelligence at all, no matter how primitive, that intelligence becomes a tool which can 
be used in the construction of further complexity.  

Where the human line developed from very complex non-general intelligence into very complex 
general intelligence, a successful AI project is more likely to develop from a primitive general 
intelligence into a complex general intelligence.  Note that primitive does not mean architecturally 
simple.  The right set of subsystems, even in a primitive and simplified state, may be able to function 
together as a complete but imbecilic mind which then provides a framework for further 
development.  This does not imply that AI can be reduced to a single algorithm containing the 



 

"essence of intelligence".  A cognitive supersystem may be "primitive" relative to a human and still 
require a tremendous amount of functional complexity.  

I am admittedly biased against the search for a single essence of intelligence; I believe that the search 
for a single essence of intelligence lies at the center of AI's previous failures.  Simplicity is the grail of 
physics, not AI.  Physicists win Nobel Prizes when they discover a previously unknown underlying 
layer and explain its behaviors.  We already know what the ultimate bottom layer of an Artificial 
Intelligence looks like; it looks like ones and zeroes.  Our job is to build something interesting out of 
those ones and zeroes.  The Turing formalism does not solve this problem any more than quantum 
electrodynamics tells us how to build a bicycle; knowing the abstract fact that a bicycle is built from 
atoms doesn't tell you how to build a bicycle out of atoms - which atoms to use and where to put 
them.  Similarly, the abstract knowledge that biological neurons implement human intelligence does 
not explain human intelligence.  The classical hype of early neural networks, that they used "the 
same parallel architecture as the human brain", should, at most, have been a claim of using the same 
parallel architecture as an earthworm's brain.  (And given the complexity of biological neurons, the 
claim would still have been wrong.)  

"The science of understanding living organization is very different from physics or chemistry, 
where parsimony makes sense as a theoretical criterion.  The study of organisms is more like 
reverse engineering, where one may be dealing with a large array of very different 
components whose heterogeneous organization is explained by the way in which they 
interact to produce a functional outcome.  Evolution, the constructor of living organisms, 
has no privileged tendency to build into designs principles of operation that are simple and 
general."  
            -- Leda Cosmides and John Tooby, "The Psychological Foundations of Culture" 
[Tooby92] 

 
The field of Artificial Intelligence suffers from a heavy, lingering dose of genericity and black-box, 
blank-slate, tabula-rasa concepts seeping in from the Standard Social Sciences Model (SSSM) 
identified by [Tooby92].  The general project of liberating AI from the clutches of the SSSM is more 
work than I wish to undertake in this paper, but one problem that must be dealt with immediately is 
physics envy.  The development of physics over the last few centuries has been characterized by the 
discovery of unifying equations which neatly underlie many complex phenomena.  Most of the past 
fifty years in AI might be described as the search for a similar unifying principle believed to underlie 
the complex phenomenon of intelligence.  

Physics envy in AI is the search for a single, simple underlying process, with the expectation that this 
one discovery will lay bare all the secrets of intelligence.  The tendency to treat new approaches to 
AI as if they were new theories of physics may at least partially explain AI's past history of overpromise 
and oversimplification.  Attributing all the vast functionality of human intelligence to some single 
descriptive facet - that brains are "parallel", or "distributed", or "stochastic"; that minds use 
"deduction" or "induction" - results in a failure (an overhyped failure) as the project promises that all 
the functionality of human intelligence will slide out from some simple principle.  

The effects of physics envy can be more subtle; they also appear in the lack of interaction between 
AI projects.  Physics envy has given rise to a series of AI projects that could only use one idea, as 
each new hypothesis for the one true essence of intelligence was tested and discarded.  Douglas Lenat's 



 

AM and EURISKO programs [Douglas83] - though the results were controversial and may have 
been mildly exaggerated [Ritchie84] - nonetheless used very intriguing and fundamental design 
patterns to deliver significant and unprecedented results.  Despite this, the design patterns of 
EURISKO, such as self-modifying decomposable heuristics, have seen almost no reuse in later 
AIs.  Even Lenat's subsequent Cyc project [Lenat86] apparently does not reuse the ideas developed 
in EURISKO.  From the perspective of a modern-day programmer, accustomed to hoarding design 
patterns and code libraries, the lack of crossfertilization is a surprising anomaly.  One would think 
that self-optimizing heuristics would be useful as an external tool, e.g. for parameter tuning, even if 
the overall cognitive architecture did not allow for the internal use of such heuristics.  The AI field 
seems to have treated EURISKO as a failed hypothesis, or even a competing hypothesis, rather than an 
incremental success or a reusable tool.  

The most common paradigms of traditional AI - search trees, neural networks, genetic algorithms, 
evolutionary computation, semantic nets - have in common the property that they can be 
implemented without requiring a store of preexisting complexity.  The processes that have become 
traditional, that have been reused, are the tools that stand alone and are immediately useful.  A 
semantic network is a "knowledge" representation so simple that it is literally writable on paper.  An 
AI project adding a semantic network need not design a hippocampus-equivalent to form memories, 
nor build a sensory modality to represent mental imagery.  The traditional AI processes 
accompanying semantic nets - such as theorem proving, case-based reasoning, production systems, 
and expert systems - are again standalone algorithms.  Neural networks and evolutionary 
computations are not generally intelligent but they are generically intelligent; they can be trained on 
any problem that has a sufficiently shallow fitness gradient relative to available computing 
power.  (Though EURISKO's self-modifying heuristics probably had generality equaling or 
exceeding these more typical tools, the source code was not open and the system design was far too 
complex to build over an afternoon, so the design pattern was not reused - or so I would guess.)  

The standalone nature of the traditional processes may make them useful tools for shoring up the 
initial stages of a general AI supersystem - with the exception of the semantic network; I regard 
semantic nets as poisonous to AI research for reasons which should shortly become clear.  But 
standalone algorithms are not substitutes for intelligence and they are not complete 
systems.  Genericity is not the same as generality.  

"Physics envy" (trying to replace the human cognitive supersystem with a single process or method) 
should be distinguished from the less ambitious attempt to clean up the human mind design while 
leaving the essential architecture intact.  Cleanup is probably inevitable while human programmers 
are involved, but it is nonetheless a problem to be approached with extreme caution.  Although the 
population genetics model of evolution admits of many theoretical reasons why the presence of a 
feature may not imply adaptiveness (much less optimality), in practice the adaptationists usually 
win.  The spandrels of San Marco may not have been built for decorative elegance [Gould79], but 
they are still holding the roof up.  Cleanup should be undertaken, not with pride in the greater 
simplicity of human design relative to evolutionary design, but with a healthy dose of anxiety that we 
will leave out something important.  

An example:  Humans are currently believed to have a modular adaptation for visual face 
recognition, generally identified with a portion of inferotemporal cortex, though this is a 
simplification [Rodman99].  At first glance this brainware appears to be an archetypal example of 



 

human-specific functionality, an adaptation to an evolutionary context with no obvious analogue for 
an early-stage AI.  However, [Carey92] has suggested from neuropathological evidence (associated 
deficits) that face recognition brainware is also responsible for the generalized task of acquiring very 
fine expertise in the visual domain; thus, the dynamics of face recognition may be of general significance 
for builders of sensory modalities.  

Another example is the sensory modalities themselves.  As described in greater detail in Part II, the 
human cognitive supersystem is built to require the use of the sensory modalities which we originally 
evolved for other purposes.  One good reason why the human supersystem uses sensory modalities 
is that the sensory modalities are there.  Sensory modalities are evolutionarily ancient; they would 
have existed, in primitive or complex form, during the evolution of all higher levels of 
organization.  Neural tissue was already dedicated to sensory modalities, and would go on 
consuming ATP2 even if inactive, albeit at a lesser rate.  Consider the incremental nature of 
adaptation, so that in the very beginnings of hominid intelligence only a very small amount of de novo 
complexity would have been involved; consider that evolution has no inherent drive toward design 
elegance; consider that adaptation is in response to the total environment, which includes both the 
external environment and the genetic environment - these are all plausible reasons to suspect 
evolution of offloading the computational burden onto pre-existing neural circuitry, even where a 
human designer would have chosen to employ a separate subsystem.  Thus, it was not inherently 
absurd for AI's first devotees to try for general intelligence that employed no sensory modalities.  

Today we have at least one reason to believe that nonsensory intelligence is a bad approach; we tried 
it and it didn't work.  Of course this is far too general an argument - it applies equally to "we tried 
non-face-recognizing intelligence and it didn't work" or even "we tried non-bipedal intelligence and 
it didn't work".  The argument's real force derives from specific hypotheses about the functional role 
of sensory modalities in general intelligence (discussed in Part II).  But in retrospect we can identify 
at least one methodological problem:  Rather than identifying the role played by modalities in 
intelligence, and then attempting to "clean up" the design by substituting a simpler process into the 
functional role played by modalities3, the first explorers of AI simply assumed that sensory 
modalities were irrelevant to general intelligence.  

Leaving out key design elements, without replacement, on the basis of the mistaken belief that they 
are not relevant to general intelligence, is an error that displays a terrifying synergy with "physics 
envy".  In extreme cases - and most historical cases have been extreme - the design ignores everything 
about the human mind except one characteristic (logic, distributed parallelism, fuzziness, etc.), which 
is held to be "the key to intelligence".  

I argue strongly for "supersystems", but I do not believe that "supersystems" are the necessary and 
sufficient Key to AI.  Human general intelligence requires the right supersystem, with the right 
cognitive subsystems, doing the right things in the right way.  Humans are not intelligent by virtue of 
being "supersystems", but by virtue of being a particular supersystem which implements human 
intelligence.  I emphasize supersystem design because I believe that the field of AI has been crippled 
by the wrong kind of simplicity - a simplicity which, as a design constraint, rules out workable designs 
for intelligence; a simplicity which, as a methodology, rules out incremental progress toward an 
understanding of general intelligence; a simplicity which, as a viewpoint, renders most of the mind 
invisible except for whichever single aspect is currently promoted as the Key to AI.  



 

If the quest for design simplicity is to be "considered harmful"4, what should replace it?  I believe 
that rather than simplicity, we should pursue sufficiently complex explanations and usefully deep designs.  In 
ordinary programming, there is no reason to assume a priori that the task is enormously large.  In AI 
the rule should be that the problem is always harder and deeper than it looks, even after you take 
this rule into account.  Knowing that the task is large does not enable us to meet the challenge just 
by making our designs larger or more complicated; certain specific complexity is required, and 
complexity for the sake of complexity is worse than useless.  Nonetheless, the presumption that we 
are more likely to underdesign than overdesign implies a different attitude towards design, in which 
victory is never declared, and even after a problem appears to be solved, we go on trying to solve 
it.  If this creed were to be summed up in a single phrase, it would be:  "Necessary but not 
sufficient."  In accordance with this creed, it should be emphasized that supersystems thinking is 
only one part of a larger paradigm, and that an open-ended design process is itself "necessary but 
not sufficient".  These are first steps toward AI, but not the only first steps, and certainly not the last 
steps.  

2: Part II: Levels of organization in deliberative general intelligence 

Intelligence in the human cognitive supersystem is the result of the many cognitive processes taking 
place on multiple levels of organization.  However, this statement is vague without hypotheses about 
specific levels of organization and specific cognitive phenomena.  The concrete theory presented in 
Part II goes under the name of "deliberative general intelligence" (DGI).  

The human mind, owing to its accretive evolutionary origin, has several major distinct candidates for 
the mind's "center of gravity".  For example, the limbic system is an evolutionarily ancient part of 
the brain that now coordinates activities in many of the other systems that later grew up around 
it.  However, in (cautiously) considering what a more foresightful and less accretive design for 
intelligence might look like, I find that a single center of gravity stands out as having the most 
complexity and doing most of the substantive work of intelligence, such that in an AI, to an even 
greater degree than in humans, this center of gravity would probably become the central 
supersystem of the mind.  This center of gravity is the cognitive superprocess which is 
introspectively observed by humans through the internal narrative - the process whose workings are 
reflected in the mental sentences that we internally "speak" and internally "hear" when thinking 
about a problem.  To avoid the awkward phrase "stream of consciousness" and the loaded word 
"consciousness", this cognitive superprocess will hereafter be referred to as deliberation.  

2.1: An illustration of principles 

My chosen entry point into deliberation is words - that is, the words we mentally speak and mentally 
hear in our internal narrative.  Let us take the word "lightbulb" (or the wordlike phrase "light bulb") 
as an example5.  When you see the letters spelling "light bulb", the phonemes for light bulb flow 
through your auditory cortex.  If a mental task requires it, a visual exemplar for the "light bulb" 
category may be retrieved as mental imagery in your visual cortex (and associated visual 
areas).  Some of your past memories and experiences, such as accidentally breaking a light bulb and 
carefully sweeping up the sharp pieces, may be associated with or stored under the "light bulb" 
concept.  "Light bulb" is associated to other concepts; in cognitive priming experiments, it has been 
shown that hearing a phrase such as "light bulb"6 will prime associated words such as "fluorescent" 
or "fragile", increasing the recognition speed or reaction speed when associated words are presented 



 

[Meyer71].  The "light bulb" concept can act as a mental category; it describes some referents in 
perceived sensory experiences or internal mental imagery, but not other referents; and, among the 
referents it describes, it describes some strongly and others only weakly.  

To further expose the internal complexity of the "light bulb" concept, I would like to offer an 
introspective illustration.  I apologize to any readers who possess strong philosophical prejudices 
against introspection; I emphasize that the exercise is not intended as evidence for a theory, but rather 
as a means of introducing and grounding concepts that will be argued in more detail later.  That said:  

Close your eyes, and try to immediately (without conscious reasoning) visualize a triangular light bulb - 
now.  Did you do so?  What did you see?  On personally performing this test for the first time, I saw 
a pyramidal light bulb, with smoothed edges, with a bulb on the square base.  Perhaps you saw a 
tetrahedral light bulb instead of a pyramidal one, or a light bulb with sharp edges instead of smooth 
edges, or even a fluorescent tube bent into an equilateral triangle.  The specific result varies; what 
matters is the process you used to arrive at the mental imagery.  

Our mental image for "triangular light bulb" would intuitively appear to be the result of imposing 
"triangular", the adjectival form of "triangle", on the "light bulb" concept.  That is, the novel mental 
image of a triangular light bulb is apparently the result of combining the sensory content of two pre-
existing concepts.  (DGI7 does not hold otherwise, but the assumption deserves to be pointed out 
explicitly.)  Similarly, the combination of the two concepts is not a collision, but a structured 
imposition; "triangular" is imposed on "light bulb", and not "light-bulb-like" on "triangle".  

The structured combination of two concepts is a major cognitive process.  I emphasize that I am 
not talking about interesting complexity which is supposedly to be found in the overall pattern of 
relations between concepts; I am talking about complexity which is directly visible in the specific 
example of imposing "triangular" on "light bulb".  I am not "zooming out" to look at the overall 
terrain of concepts, but "zooming in" to look at the cognitive processes needed to handle this single 
case.  The specific example of imposing "triangular" on "light bulb" is a nontrivial feat of mind; 
"triangular light bulb" is a trickier concept combination than "green light bulb" or "triangular 
parking lot".  

The mental process of visualizing a "triangular light bulb" flashes through the mind very quickly; it 
may be possible to glimpse subjective flashes of the concept combination, but the process is not 
really open to human introspection.  For example, when first imposing "triangular" on "light bulb", I 
would report a brief subjective flash of a conflict arising from trying to impose the planar 2-D shape 
of "triangular" on the 3-D "light bulb" concept.  However, before this conflict could take place, it 
would seem necessary that some cognitive process have already selected the shape facet of 
"triangular" for imposition - as opposed to, say, the color or line width of the "triangle" exemplar 
that appears when I try to visualize a "triangle" as such.  However, this initial selection of shape as the 
key facet did not rise to the level of conscious attention.  I can guess at the underlying selection 
process - in this case, that past experience with the usage had already "cached" shape as the salient 
facet for the concept triangular, and that the concept was abstracted from an experiential base in 
which shape, but not color, was the perceived similarity within the group of experiences.  However, 
I cannot actually introspect on this selection process.  



 

Likewise, I may have glimpsed the existence of a conflict, and that it was a conflict resulting from 
the 2D nature of "triangular" versus the 3D nature of "light bulb", but how the conflict was detected 
is not apparent in the subjective glimpse.  And the resolution of the conflict, the transformation of 
the 2D triangle shape into a 3D pyramid shape, was apparently instantaneous from my introspective 
vantage point.  Again, I can guess at the underlying process - in this case, that several already-
associated conceptual neighbors of "triangle" were imposed on "light bulb" in parallel, and the best 
fit selected.  But even if this explanation is correct, the process occurred too fast to be visible to 
direct introspection.  I cannot rule out the possibility that a more complex, more deeply creative 
process was involved in the transition from triangle to pyramid, although basic constraints on human 
information-processing (the 200 spike/second speed limit of the underlying neurons) still 
apply.  Nor can I rule out the possibility that there was a unique serial route from triangle to pyramid.  

The creation of an actual visuospatial image of a pyramidal light bulb is, presumably, a complex 
visual process - one that implies the ability of the visuospatial modality to reverse the usual flow of 
information and send commands from high-level features to low-level features, instead of detecting 
high-level features from low-level features.  DGI hypothesizes that visualization occurs through a 
flow from high-level feature controllers to low-level feature controllers, creating an articulated mental 
image within a sensory modality through a multistage process that allows the detection of conflicts 
at higher levels before proceeding to lower levels.  The final mental imagery is introspectively visible, 
but the process that creates it is mostly opaque.  

Some theorists defy introspection to assert that our mental imagery is purely abstract 
[Pylyshyn81].  Yet there exists evidence from neuroanatomy, functional neuroimaging, pathology of 
neurological disorders, and cognitive psychology to support the contention that mental imagery is 
directly represented in sensory modalities [Kosslyn94].  [Finke77] show that mental imagery can 
create visual afterimages8 similar to, though weaker than, the afterimages resulting from real visual 
experience.  [Sherman86] estimate that while the cat has roughly 106 fibers from the lateral geniculate 
nucleus9 to the visual cortex, there are approximately 107 fibers running in the opposite 
direction.  No explanatory consensus currently exists for the existence of the massive 
corticothalamic feedback projections, though there are many competing theories; the puzzle is of 
obvious interest to an AI researcher positing a theory in which inventing novel mental imagery is 
more computationally intensive than sensory perception.  

To return to the "triangular lightbulb" example:  Once the visuospatial image of a pyramidal light 
bulb was fully articulated, the next introspective glimpse was of a conflict in visualizing a glass 
pyramid - a pyramid has sharp edges, and sharp glass can cut the user.  This implies the mental 
imagery had semantic content (knowledge about the material composition of the pyramidal light 
bulb), imported from the original "light bulb" concept, and well-integrated with the visual 
representation.  Like most modern-day humans, I know from early parental warnings and later real-
life confirmation that sharp glass is dangerous.  Thus the rapid visual detection of sharp glass is 
important when dealing with real-life sensory experience.  I say this to emphasize that no extended 
line of intelligent reasoning (which would exceed the 200Hz speed limit of biological neurons) is 
required to react negatively to a fleeting mental image of sharp glass.  This reaction could reasonably 
happen in a single perceptual step, so long as the same perceptual system which detects the visual 
signature of sharp glass in real-world sensory experience also reacts to mental imagery.  



 

The conflict detected was resolved by the imposition of smooth edges on the glass pyramid making 
up the pyramidal light bulb.  Again, this apparently occurred instantly; again, nontrivial hidden 
complexity is implied.  To frame the problem in the terms suggested by [Hofstadter85], the 
imaginative process needed to possess or create a "knob" governing the image's transition from 
sharp edges to rounded edges, and the possession or creation of this knob is the most interesting 
part of the process, not the selection of one knob from many.  If the "knob" was created on the fly, 
it implies a much higher degree of systemic creativity than selecting from among pre-existing 
options.  

Once the final conflict was resolved by the perceptual imposition of smoothed edges, the final 
mental image took on a stable form.  Again, in this example, all of the mental events appeared 
introspectively to happen automatically and without conscious decisions on my part; I would 
estimate that the whole process took less than one second.  

In concept combination, a few flashes of the intermediate stages of processing may be visible as 
introspective glimpses - especially those conflicts that arise to the level of conscious attention before 
being resolved automatically.  But the extreme rapidity of the process means the glimpses are even 
more unreliable than ordinary introspection - where introspection is traditionally considered 
unreliable to begin with.  To some extent, this is the point of the illustration narrated above; almost 
all of the internal complexity of concepts is hidden away from human introspection, and many 
theories of AI (even in the modern era) thus attempt to implement concepts on the token level, e.g., 
"lightbulb" as a raw LISP atom.  

This traditional problem is why I have carefully avoided using the word symbol in the exposition 
above.  In AI, the term "symbol" carries implicit connotations about representation - that the 
symbol is a naked LISP atom (Prolog variable, etc.) whose supposed meaning derives from its 
relation to the surrounding atoms in a semantic net; or at most a LISP atom whose content is a 
"frame-based" LISP structure (that is, whose content is another semantic net).  Even attempts to 
argue against the design assumptions of Good Old-Fashioned AI (GOFAI) are often phrased in 
GOFAI's terms; for example, the "symbol grounding problem".  Much discussion of the symbol 
grounding problem has approached the problem as if the design starts out with symbols and 
"grounding" is then added.  In some cases this viewpoint has directly translated to AI architectures; 
e.g., a traditional semantic net is loosely coupled to a connectionist sensorimotor system 
[Hexmoor93].  

DGI belongs to the existing tradition that asks, not "How do we ground our semantic nets?", but 
rather "What is the underlying stuff making up these rich high-level objects we call 'symbols'?" - an 
approach presented most beautifully in [Hofstadter79]; see also [Chalmers92].  From this viewpoint, 
without the right underlying "symbolstuff", there are no symbols; merely LISP tokens carved in 
mockery of real concepts and brought to unholy life by the naming-makes-it-so fallacy.  

Imagine sensory modalities as solid objects with a metaphorical surface composed of the layered 
feature detectors and their inverse functions as feature controllers.  The metaphorical "symbolstuff" 
is a pattern that interacts with the feature detectors to test for the presence of complex patterns in 
sensory data, or inversely, interacts with the feature controllers to produce complex mental 
imagery.  Symbols combine through the faceted combination of their symbolstuffs, using a process 
that might be called "holonic conflict resolution", where information flows from high-level feature 



 

controllers to low-level feature controllers, and conflicts are detected at each layer as the flow 
proceeds.  ("Holonic" is a useful word to describe the simultaneous application of reductionism and 
holism, in which a single quality is simultaneously a combination of parts and a part of a greater 
whole [Koestler67].  Note that "holonic" does not imply strict hierarchy, only a general flow from 
high-level to low-level and vice versa.  For example, a single feature detector may make use of the 
output of lower-level feature detectors, and act in turn as an input to higher-level feature 
detectors.  The information contained in a mid-level feature is then the holistic sum of many lower-
level features, and also an element in the sums produced by higher-level features.  If you pick one 
vantage point in a holonic structure and "look down" (reductionism) you find parts composing the 
local whole, with simpler behaviors that contribute to local complexity; if you "look up" (holism) 
you find a greater whole to which local parts contribute, and more complex processes which local 
behaviors support.  See also [Hofstadter79].)  

I apologize for adding yet another term, "holonic conflict resolution", to a namespace already 
crowded with terms such as "computational temperature" [Mitchell93], "Prägnanz" [Koffka35], 
"Hopfield networks" [Hopfield85], "constraint propagation" [Kumar92], and many others.  Holonic 
conflict resolution is certainly not a wholly new idea, and may even be wholly unoriginal on a 
feature-by-feature basis, but the combination of features I wish to describe does not exactly match 
the existing common usage of any of the terms above.  "Holonic conflict resolution" is intended to 
convey the image of a process that flows serially through the layered, holonic structure of perception, 
with detected conflicts resolved locally or propagated to the level above, with a final solution that 
satisfices.  Many of the terms above, in their common usage, refer to an iterated annealing process 
which seeks a global minimum.  Holonic conflict resolution is intended to be biologically plausible; 
i.e., to involve a smooth flow of visualization which is computationally tractable for parallel but 
speed-limited neurons.  

Holonic conflict resolution is not proposed as a complete solution to perceptual problems, but 
rather as the active canvas for the interaction of concepts with mental imagery.  In theoretical terms, 
holonic conflict resolution is a structural framework within which to posit specific conflict-detection 
and conflict-resolution methods.  Holonic imagery is the artist's medium within which symbolstuff 
paints mental pictures such as "triangular light bulb".  

A constructive account of concepts and symbolstuff would need to supply:  

• (a)  A description of how a concept is satisfied by and imposed on referents in a sensory 
modality.  

• (b)  A symbolstuff representation satisfying (a) that can contain the internal complexity 
needed for faceted concept combination.  

• (c)  A representation satisfying (a) and (b), such that it is computationally tractable to 
abstract new concepts using sensory experience as raw material.  

This is not an exhaustive list of concept functionality; these are just the three most "interesting" 
challenges10.  These challenges are interesting because the difficulty of solving them simultaneously 
seems to be the multiplicative (rather than additive) product of the difficulties of solving them 
individually.  Other design requirements for a constructive account of concepts would include: 
association to nearby concepts; supercategories and subcategories; exemplars stored in memory; 
prototype and typicality effects [Rosch78]; and many others (see, e.g., [Lakoff87]).  



 

The interaction of concepts with modalities, and the interaction of concepts with each other, 
illustrate what I believe to be several important rules about how to approach AI.  

The first principle is that of multiple levels of organization.  The human phenotype is composed of 
atoms11, molecules, proteins, cells, tissues, organs, organ systems, and finally the complete body - 
eight distinguishable layers of organization, each successive layer built above the preceding one, each 
successive layer incorporating evolved adaptive complexity.  Some useful properties of the higher 
level may emerge naturally from lower-level behaviors, but not all of them; higher-level properties 
are also subject to selection pressures on heritable variation and the elaboration of complex 
functional adaptations.  In postulating multiple levels of organization, I am not positing that the 
behaviors of all higher layers emerge automatically from the lowest layer.  

If I had to pick one single mistake that has been the most debilitating in AI, it would be implementing a 
process too close to the token level - trying to implement a high-level process without implementing the 
underlying layers of organization.  Many proverbial AI pathologies result at least partially from 
omitting lower levels of organization from the design.  

Take, for example, that version of the "frame problem" - sometimes also considered a form of the 
"commonsense problem" - in which intelligent reasoning appears to require knowledge of an infinite 
number of special cases.  Consider a CPU which adds two 32-bit numbers.  The higher level consists 
of two integers which are added to produce a third integer.  On a lower level, the computational 
objects are not regarded as opaque "integers", but as ordered structures of 32 bits.  When the CPU 
performs an arithmetic operation, two structures of 32 bits collide, under certain rules which govern 
the local interactions between bits, and the result is a new structure of 32 bits.  Now consider the 
woes of a research team, with no knowledge of the CPU's underlying implementation, that tries to 
create an arithmetic "expert system" by encoding a vast semantic network containing the 
"knowledge" that two and two make four, twenty-one and sixteen make thirty-seven, and so 
on.  This giant lookup table requires eighteen billion billion entries for completion.  

In this hypothetical world where the lower-level process of addition is not understood, we can 
imagine the "common-sense" problem for addition; the launching of distributed Internet projects to 
"encode all the detailed knowledge necessary for addition"; the frame problem for addition; the 
philosophies of formal semantics under which the LISP token thirty-seven is meaningful because it 
refers to thirty-seven objects in the external world; the design principle that the token thirty-seven 
has no internal complexity and is rather given meaning by its network of relations to other tokens; 
the "number grounding problem"; the hopeful futurists arguing that past projects to create Artificial 
Addition failed because of inadequate computing power; and so on.  

To some extent this is an unfair analogy.  Even if the thought experiment is basically correct, and 
the woes described would result from an attempt to capture a high-level description of arithmetic 
without implementing the underlying lower level, this does not prove the analogous mistake is the 
source of these woes in the real field of AI.  And to some extent the above description is unfair even 
as a thought experiment; an arithmetical expert system would not be as bankrupt as semantic 
nets.  The regularities in an "expert system for arithmetic" would be real, noticeable by simple and 
computationally feasible means, and could be used to deduce that arithmetic was the underlying 
process being represented, even by a Martian reading the program code with no hint as to the 



 

intended purpose of the system.  The gap between the higher level and the lower level is not 
absolute and uncrossable, as it is in semantic nets.  

An arithmetic expert system that leaves out one level of organization may be recoverable.  Semantic 
nets leave out multiple levels of organization.  Omitting all the experiential and sensory grounding of 
human symbols leaves no raw material to work with.  If all the LISP tokens in a semantic net were 
given random new names, there would be no way to deduce whether G0025 formerly meant 
hamburger or chair.  [Harnad90] describes the symbol grounding problem arising out of semantic 
nets as similar to learning Chinese as a first language using only a Chinese-to-Chinese dictionary.  

I believe that many (though not all) cases of the "commonsense problem" or "frame problem" arise 
from trying to store all possible descriptions of high-level behaviors that, in the human mind, are 
modeled by visualizing the lower level of organization from which those behaviors emerge.  For 
example, [Lakoff99] give a sample list of "built-in inferences" emerging from what they identify as 
the Source-Path-Goal metaphor:  

• If you have traversed a route to a current location, you have been at all previous locations on 
that route.  

• If you travel from A to B and from B to C, then you have traveled from A to C.  
• If X and Y are traveling along a direct route from A to B and X passes Y, then X is farther 

from A and closer to B than Y is.  
• (et cetera)  

A general intelligence with a visual modality has no need to explicitly store an infinite number of 
such statements in a theorem-proving production system.  The above statements can be perceived 
on the fly by inspecting depictive mental imagery.  Rather than storing knowledge about trajectories, a 
visual modality actually simulates the behavior of trajectories.  A visual modality uses low-level elements, 
metaphorical "pixels" and their holonic feature structure, whose behaviors locally correspond to the 
real-world behaviors of the referent.  There is a mapping from representation to referent, but it is a 
mapping on a lower level of organization than traditional semantic nets attempt to capture.  The 
correspondence happens on the level where 13 is the structure 00001101, not on the level where it is 
the number thirteen.  

I occasionally encounter some confusion about the difference between a visual modality and a 
microtheory of vision.  Admittedly, microtheories in theorem-proving systems are well known in AI, so 
some confusion is understandable.  But layered feature extraction in the visual modality - which is an 
established fact of neuroscience - is also very well known even in the pure computer science 
tradition of AI, and has been well-known ever since David Marr's tremendously influential 1982 
book Vision [Marr82] and earlier papers.  To make the difference explicit, the human visual cortex 
"knows" about edge detection, shading, textures of curved surfaces, binocular disparities, color 
constancy under natural lighting, motion relative to the plane of fixation, and so on.  The visual 
cortex does not know about butterflies.  In fact, a visual cortex "knows" nothing; a sensory modality 
contains behaviors which correspond to environmental invariants, not knowledge about 
environmental regularities.  

This illustrates the second-worst error in AI, the failure to distinguish between things that can be 
hardwired and things that must be learned.  We are not preprogrammed to know about 



 

butterflies.  Evolution wired us with visual circuitry that makes sense of the sensory image of the 
butterfly, and with object-recognition systems that form visual categories.  When we see a butterfly, 
we are then able to recognize future butterflies as belonging to the same kind.  Sometimes evolution 
bypasses this system to give us visual instincts, but this constitutes a tiny fraction of visual 
knowledge.  A modern human recognizes a vast number of visual categories with no analogues in 
the ancestral environment.  

What problems result from failing to distinguish between things that can be hardwired and things 
that must be learned?  "Hardwiring what should be learned" is so universally combined with 
"collapsing the levels of organization" that it is difficult to sort out the resulting pathologies.  An 
expert systems engineer, in addition to acting on the assumption that knowledge of butterflies can 
be preprogrammed, is also likely to act on the assumption that knowledge about butterflies consists 
of a butterfly LISP token which derives meaning from relations to other LISP tokens - rather than 
butterfly being a stored pattern that interacts with the visual modality and recognizes a butterfly.  A 
semantic net not only lacks richness, it lacks the capacity to represent richness.  Thus, I would 
attribute the symbol grounding problem to "collapsing the levels of organization", rather than 
"hardwiring what should be learned".  

But even if a programmer who understood the levels of organization tried to create butterfly-
recognizing symbolstuff by hand, I would still expect the resulting butterfly pattern to lack the 
richness of the learned butterfly pattern in a human mind.  When the human visual system creates a 
butterfly visual category, it does not write an opaque, procedural butterfly-recognition codelet using 
abstract knowledge about butterflies and then tag the codelet onto a butterfly frame.  Human visual 
categorization abstracts the butterfly category from a store of visual experiences of butterflies.  

Furthermore, visual categorization - the general concept-formation process, not just the temporal 
visual processing stream - leaves behind an association between the butterfly concept and the stored 
memories from which "butterfly" was abstracted; it associates one or more exemplars with the 
butterfly category; it associates the butterfly category through overlapping territory to other visual 
categories such as fluttering; it creates butterfly symbolstuff that can combine with other symbolstuffs 
to produce mental imagery of a blue butterfly; and so on.  To the extent that a human lacks the 
patience to do these things, or to the extent that a human does them in fragile and hand-coded ways 
rather than using robust abstraction from a messy experiential base, lack of richness will result.  Even if 
an AI needs programmer-created concepts to bootstrap further concept formation, bootstrap 
concepts should be created using programmer-directed tool versions of the corresponding AI 
subsystems, and the bootstrap concepts should be replaced with AI-formed concepts as early as 
possible.  

Two other potential problems emerging from the use of programmer-created content are opacity and 
isolation.  

Opacity refers to the potential inability of an AI's subsystems to modify content that originated 
outside the AI.  If a programmer is creating cognitive content, it should at least be the kind of 
content that the AI could have created on its own; it should be content in a form that the AI's 
cognitive subsystems can manipulate.  The best way to ensure that the AI can modify and use 
internal content is to have the AI create the content.  If an AI's cognitive subsystems are powerful 
enough to create content independently, then hopefully those same subsystems will be capable of 



 

adding to that content, manipulating it, bending it in response to pressures exerted by a problem, 
and so on.  What the AI creates, the AI can use and improve.  Whatever the AI accomplishes on its 
own is a part of the AI's mind; the AI "owns" it and is not simply borrowing it from the 
programmers.  This is a principle that extends far beyond abstracting concepts!  

Isolation means that if a concept, or a piece of knowledge, is handed to the AI on a silver platter, the 
AI may be isolated from the things that the AI would have needed to learn first in order to acquire 
that knowledge naturally, in the course of building up successive layers of understanding to handle 
problems of increasing complexity.  The concept may also be isolated from similar concepts and 
related concepts that the AI would otherwise have learned at around the same time, denying the AI 
useful associations and slippages.  Conceivably programmers could try to second-guess isolation by 
hardwiring many similar "knowledges", but this is no substitute for a natural ecology of cognition.  

2.2: Levels of organization in deliberation 

The model of intelligence presented in this chapter - "Deliberative General Intelligence" or "DGI" - 
requires five distinct layers of organization, each layer built on top of the underlying layer.  

• The bottom layer is source code and data structures - complexity that is manipulated directly by 
the programmer.  The equivalent layer for humans is neurons and neural circuitry.  
   

• The next layer is sensory modalities.  In humans, the archetypal examples of sensory modalities 
are sight, sound, touch, taste, smell, and so on12; implemented by the visual areas, auditory 
areas, et cetera.  In biological brains, sensory modalities come the closest to being 
"hardwired"; they generally involve clearly defined stages of information-processing and 
feature-extraction, sometimes with individual neurons playing clearly defined roles.  Thus, 
sensory modalities are some of the best candidates for processes that can be directly coded 
by programmers without rendering the system crystalline and fragile.  
   

• The next layer is concepts.  Concepts (also sometimes known as "categories", or "symbols") 
are abstracted from our experiences.  Abstraction reifies a perceived similarity within a group 
of experiences.  Once reified, the common quality can then be used to determine whether 
new mental imagery satisfies the quality, and the quality can be imposed on a mental image, 
altering it.  Having abstracted the concept "red", we can take a mental image of a non-red 
object (for example, grass) and imagine "red grass".  Concepts are patterns that mesh with 
sensory imagery; concepts are complex, flexible, reusable patterns that have been reified and 
placed in long-term storage.  
   

• The next layer is thoughts, built from structures of concepts.  By imposing concepts in 
targeted series, it becomes possible to build up complex mental images within the workspace 
provided by one or more sensory modalities.  The archetypal example of a thought is a 
human "sentence" - an arrangement of concepts, invoked by their symbolic tags, with 
internal structure and targeting information that can be reconstructed from a linear series of 
words using the constraints of syntax, constructing a complex mental image that can be used 
in reasoning.  Thoughts (and their corresponding mental imagery) are the disposable one-
time structures, built from reusable concepts, that implement a non-recurrent mind in a non-



 

recurrent world.  
   

• Finally, it is sequences of thoughts that implement deliberation - explanation, prediction, 
planning, design, discovery, and the other activities used to solve knowledge problems in the 
pursuit of real-world goals.  

Although the five-layer model is central to the DGI theory of intelligence, the rule of Necessary But 
Not Sufficient still holds.  An AI project will not succeed by virtue of "implementing a five-layer 
model of intelligence, just like the human brain".  It must be the right five layers.  It must be the right 
modalities, used in the right concepts, coming together to create the right thoughts seeking out the 
right goals.  (An AI might use different modalities, but will still need a right set of modalities.)  

The five-layer model of deliberation is not inclusive of everything in the DGI theory of mind, but it 
covers substantial territory, and can be extended beyond the deliberation superprocess to provide a 
loose sense of which level of organization any cognitive process lies upon.  Observing that the 
human body is composed of molecules, proteins, cells, tissues, and organs is not a complete design 
for a human body, but it is nonetheless important to know whether something is an organ or a 
protein.  Blood, for example, is not a prototypical tissue, but it is composed of cells, and is generally 
said to occupy the tissue level of organization of the human body.  Similarly, the hippocampus, in its 
role as a memory-formation subsystem, is not a sensory modality, but it can be said to occupy the 
"modality level":  It is brainware (a discrete, modular chunk of neural circuitry); it lies above the 
neuron/code level; it has a characteristic tiling/wiring pattern as the result of genetic complexity; it 
interacts as an equal with the subsystems comprising sensory modalities.  

Generalized definitions of the five levels of organization might be as follows:  

• Code-level, hardware-level:  No generalized definition is needed, except that the biological 
equivalent is the neural level or wetware level.  
   

• Modality-level:  Subsystems which, in humans, derive their adaptive complexity from genetic 
specification - or rather from the genetic specification of an initial tiling pattern and a self-
wiring algorithm, and from exposure to invariant environmental complexity13.  The AI 
equivalent is complexity which is known in advance to the programmer and which is directly 
specified through programmer efforts.  Full systems on this level are modular parts of the 
cognitive supersystem - one of a large but limited number of major parts making up the 
mind.  Where the system in question is a sensory modality or a system which clearly 
interrelates to the sensory modalities and performs modality-related tasks, the system can be 
referred to as modality-level.  Similarly, a subsystem or subprocess  of a major modality-level 
system, or a minor function of such a subsystem, may also be referred to as modality-
level.  Where this term is inappropriate, because a subsystem has little or no relation to 
sensory modalities, the subsystem may be referred to as brainware14.  
   

• Concept-level:  Concepts are cognitive objects which are placed in long-term storage, and 
reused as the building blocks of thoughts.  The generalization for this level of organization is 
learned complexity: cognitive content which is derived from the environment and placed in 
long-term storage, and which thereby becomes part of the permanent reservoir of 
complexity with which the AI challenges future problems.  The term concept-level might 



 

optionally be applied to any learned complexity that resembles categories; i.e., learned 
complexity that interacts with sensory modalities and acts on sensory modalities.  Regardless 
of whether they are conceptlike (an issue considered later), other examples of learned 
complexity include declarative beliefs and episodic memories.  
   

• Thought-level:  A thought is a specific structure of combinatorial symbols which builds or 
alters mental imagery.  The generalizable property of thoughts is their immediacy.  Thoughts 
are not evolved/programmed brainware, or a long-term reservoir of learned complexity; 
thoughts are constructed on a moment-by-moment basis.  Thoughts make up the life history 
of a non-recurrent mind in a non-recurrent universe.  The generalized thought level extends 
beyond the mentally spoken sentences in our stream of consciousness; it includes all the 
major cognitive events occurring within the world of active mental imagery, especially events 
that involve structuring the combinatorial complexity of the concept level.  
   

• Deliberation, like the code level, needs no generalization.  Deliberation describes the activities 
carried out by patterns of thoughts.  The patterns in deliberation are not just epiphenomenal 
properties of thought sequences; the deliberation level is a complete layer of organization, 
with complexity specific to that layer.  In a deliberative AI, it is patterns of thoughts that 
plan and design, transforming abstract high-level goal patterns into specific low-level goal 
patterns; it is patterns of thoughts that reason from current knowledge to predictions about 
unknown variables or future sensory data; it is patterns of thoughts that reason about 
unexplained observations to invent hypotheses about possible causes.  In general, 
deliberation uses organized sequences of thoughts to solve knowledge problems in the 
pursuit of real-world goals.  

Even for the generalized levels of organization, not everything fits cleanly into one level or 
another.  While the hardwired-learned-invented trichotomy usually matches the modality-concept-
thought trichotomy, the two are conceptually distinct, and sometimes the correspondence is 
broken.  But the levels of organization are almost always useful - even exceptions to the rule are 
more easily seen as partial departures than as complete special cases.  

2.3: The code level 

The code level is composed of functions, classes, modules, packages; data types, data structures, data 
repositories; all the purely programmatic challenges of creating AI.  Artificial Intelligence has 
traditionally been much more intertwined with computer programming than it should be, mostly 
because of attempts to overcompress the levels of organization and implement thought sequences 
directly as programmatic procedures, or implement concepts directly as LISP atoms or LISP 
frames.  The code level lies directly beneath the modality level or brainware level; bleedover from 
modality-level challenges may show up as legitimate programmatic problems, but little else - not 
thoughts, cognitive content, or high-level problem-solving methods.  

Any good programmer - a programmer with a feeling for aesthetics - knows the tedium of solving 
the same special case, over and over, in slightly different ways; and also the triumph of thinking 
through the metaproblem and creating a general solution that solves all the special cases 
simultaneously.  As the hacker Jargon File observes, "Real hackers generalize uninteresting problems 
enough to make them interesting and solve them -- thus solving the original problem as a special 



 

case (and, it must be admitted, occasionally turning a molehill into a mountain, or a mountain into a 
tectonic plate)." [Raymond01a].  This idiom does not work for general AI!  A real AI would be the 
ultimate general solution because it would encapsulate the cognitive processes that human 
programmers use to write any specific piece of code, but this ultimate solution cannot be obtained 
through the technique of successively generalizing uninteresting problems into interesting ones.  

Programming is the art of translating a human's mental model of a problem-solution into a 
computer program; that is, the art of translating thoughts into code.  Programming inherently violates 
the levels of organization; it leads directly into the pitfalls of classical AI.  The underlying low-level 
processes that implement intelligence are of a fundamentally different character than high-level 
intelligence itself.  When we translate our thoughts about a problem into code, we are establishing a 
correspondence between code and the high-level content of our minds, not a correspondence 
between code and the dynamic process of a human mind.  In ordinary programming, the task is to 
get a computer to solve a specific problem; it may be an "interesting" problem, with a very large 
domain, but it will still be a specific problem.  In ordinary programming the problem is solved by 
taking the human thought process that would be used to solve an instance of the problem, and 
translating that thought process into code that can also solve instances of the 
problem.  Programmers are humans who have learned the art of inventing thought processes, called 
"algorithms", that rely only on capabilities an ordinary computer possesses.  

The reflexes learned by a good, artistic programmer represent a fundamental danger when 
embarking on a general AI project.  Programmers are trained to solve problems, and trying to create 
general AI means solving the programming problem of creating a mind that solves problems.  There 
is the danger of a short-circuit, of misinterpreting the problem task as writing code that directly 
solves some specific challenge posed to the mind, instead of building a mind that can solve the 
challenge with general intelligence.  Code, when abused, is an excellent tool for creating long-term 
problems in the guise of short-term solutions.  

Having described what we are forbidden to do with code, what legitimate challenges lie on this level of 
organization?  

Some programming challenges are universal.  Any modern programmer should be familiar with the 
world of compilers, interpreters, debuggers, Integrated Development Environments, multithreaded 
programming, object orientation, code reuse, code maintenance, and the other tools and traditions 
of modern-day programming.  It is difficult to imagine anyone successfully coding the brainware 
level of general intelligence in assembly language - at least if the code is being developed for the first 
time.  In that sense object orientation and other features of modern-day languages are "required" for 
AI development; but they are necessary as productivity tools, not because of any deep similarity 
between the structure of the programming language and the structure of general intelligence.  Good 
programming tools help with AI development but do not help with AI.  

Some programming challenges, although universal, are likely to be unusually severe in AI 
development.  AI development is exploratory, parallelized, and large.  Writing a great deal of exploratory 
code means that IDEs with refactoring support and version control are important, and that modular 
code is even more important than it is usually - or at least, code that is as modular as possible given 
the highly interconnected nature of the cognitive supersystem.  



 

Parallelism on the hardware level is currently supported by symmetric multiprocessing chip 
architectures [Hwang98], NOW (network-of-workstations) clustering [Anderson95] and Beowulf 
clustering [Becker95], and message-passing APIs such as PVM [Geist93] and MPI 
[Gropp94].  However, software-level parallelism is not handled well by present-day languages and is 
therefore likely to present one of the greatest challenges.  Even if software parallelism were well-
supported, AI developers will still need to spend time explicitly thinking on how to parallelize 
cognitive processes - human cognition may be massively parallel on the lower levels, but the overall 
flow of cognition is still serial.  

Finally, there are some programming challenges that are likely to be unique to AI.  

We know it is possible to evolve a general intelligence that runs on a hundred trillion synapses with 
characteristic limiting speeds of approximately 200 spikes per second.  An interesting property of 
human neurobiology is that, at a limiting speed of 150 meters per second for myelinated axons, each 
neuron is potentially within roughly a single "clock tick" of any other neuron in the 
brain15.  [Sandberg99] describes a quantity S that translates to the wait time, in clock cycles, between 
different parts of a cognitive system - the minimum time it could take for a signal to travel between 
the most distant parts of the system, measured in the system's clock ticks.  For the human brain, S is 
on the rough order of 1 - in theory, at least.  In practice, axons take up space and myelinated axons 
take up even more space, so the brain uses a highly modular architecture, but there are still long-
distance pipes such as the corpus callosum.  Currently, S is much greater than 1 for clustered 
computing systems.  S is greater than 1 even within a single-processor computer system; Moore's 
Law for intrasystem communications bandwidth describes a substantially slower doubling time than 
processor speeds.  Increasingly the limiting resource of modern computing systems is not processor 
speed but memory bandwidth [Wulf95] (and this problem has gotten worse, rather than better, since 
1995).  

One class of purely programmatic problems that are unique to AI arise from the need to "port" 
intelligence from massively parallel neurons to clustered computing systems (or other human-
programmable substrate).  It is conceivable, for example, that the human mind handles the cognitive 
process of memory association by comparing current working imagery to all stored memories, in 
parallel.  We have no particular evidence that the human mind uses a brute force comparison, but it 
could be brute-forced.  The human brain acknowledges no distinction between CPU and RAM.  If 
there are enough neurons to store a memory, then the same neurons may presumably be called upon 
to compare that memory to current experience.  (This holds true even if the correspondence 
between neural groups and stored memories is many-to-many instead of one-to-one.)  

Memory association may or may not use a "compare" operation (brute force or otherwise) of 
current imagery against all stored memories, but it seems likely that the brain uses a massively 
parallel algorithm at one point or another of its operation; memory association is simply a plausible 
candidate.  Suppose that memory association is a brute-force task, performed by asking all neurons 
engaged in memory storage to perform a "compare" against patterns broadcast from current 
working imagery.  Faced with the design requirement of matching the brute force of 1014 massively 
parallel synapses with a mere clustered system, a programmer may be tempted to despair.  There is 
no a priori reason why such a task should be possible.  



 

Faced with a problem of this class, there are two courses the programmer can take.  The first is to 
implement an analogous "massive compare" as efficiently as possible on the available hardware - an 
algorithmic challenge worthy of Hercules, but past programmers have overcome massive 
computational barriers through heroic efforts and the relentless grinding of Moore's Law.  The 
second road - much scarier, with even less of a guarantee that success is possible - is to redesign the 
cognitive process for different hardware.  

The human brain's most fundamental limit is its speed.  Anything that happens in less than a second 
perforce must use less than 200 sequential operations, however massively parallelized.  If the human 
brain really does use a massively parallel brute-force compare against all stored memories to handle 
the problem of association, it's probably because there isn't time to do anything else!  The human 
brain is massively parallel because massive parallelism is the only way to do anything in 200 clock 
ticks.  If modern computers ran at 200Hz instead of 2GHz, PCs would also need 1014 processors to 
do anything interesting in realtime.  

A sufficiently bold general AI developer, instead of trying to reimplement the cognitive process of 
association as it developed in humans, might instead ask:  What would this cognitive subsystem look like, if 
it had evolved on hardware instead of wetware?  If we remove the old constraint of needing to complete in 
a handful of clock ticks, and add the new constraint of not being able to offhandedly "parallelize 
against all stored memories", what is the new best algorithm for memory association?  For example, 
suppose that you find a method of "fuzzy hashing" a memory, such that mostly similar memories 
automatically collide within a container space, but where the fuzzy hash inherently requires an 
extended linear series of sequential operations that would have placed "fuzzy hashing" out of reach 
for realtime neural operations.  "Fuzzy hashing" would then be a strong candidate for an alternative 
implementation of memory association.  

A computationally cheaper association subsystem that exploits serial speed instead of parallel speed, 
whether based around "fuzzy hashing" or something else entirely, might still be qualitatively less 
intelligent than the corresponding association system within the human brain.  For example, 
memory recognition might be limited to clustered contexts rather than being fully general across all 
past experience, with the AI often missing "obvious" associations (where "obvious" has the 
anthropocentric meaning of "computationally easy for a human observer").  In this case, the 
question would be whether the overall general intelligence could function well enough to get by, 
perhaps compensating for lack of associational breadth by using longer linear chains of 
reasoning.  The difference between serialism and parallelism, on a low level, would propagate 
upward to create cognitive differences that compensate for the loss of human advantages or exploit 
new advantages not shared by humans.  

Another class of problem stems from "porting" across the extremely different programming styles of 
evolution versus human coding.  Human-written programs typically involve a long series of chained 
dependencies that intersect at single points of failure - "crystalline" is a good term to describe most 
human code.  Computation in neurons has a different character.  Over time our pictures of 
biological neurons have evolved from simple integrators of synaptic inputs that fire when a 
threshold input level is reached, to sophisticated biological processors with mixed analog-digital 
logics, adaptive plasticity, dendritic computing, and functionally relevant dendritic and synaptic 
morphologies [Koch00].  What remains true is that, from an algorithmic perspective, neural 
computing uses roughly arithmetical operations16 that proceed along multiple intertwining channels 



 

in which information is represented redundantly and processed stochastically.  Hence, it is easier to 
"train" neural networks - even nonbiological connectionist networks - than to train a piece of 
human-written code.  Flipping a random bit inside the state of a running program, or flipping a 
random bit in an assembly-language instruction, has a much greater effect than a similar perturbation 
of a neural network.  For neural networks the fitness landscapes are smoother.  Why is this?  Biological 
neural networks need to tolerate greater environmental noise (data error) and processor noise 
(computational error), but this is only the beginning of the explanation.  

Smooth fitness landscapes are a useful, necessary, and fundamental outcome of evolution.  Every 
evolutionary success starts as a mutation - an error - or as a novel genetic combination.  A modern 
organism, powerfully adaptive with a large reservoir of genetic complexity, necessarily possesses a 
very long evolutionary history; that is, the genotype has necessarily passed through a very large 
number of successful mutations and recombinations along the road to its current form.  The 
"evolution of evolvability" is most commonly justified by reference to this historical constraint 
[Dawkins96], but there have also been attempts to demonstrate local selection pressures for the 
characteristics that give rise to evolvability [Wagner96], thus averting the need to invoke the 
controversial agency of species selection.  Either way, smooth fitness landscapes are part of the 
design signature of evolution.  

"Smooth fitness landscapes" imply, among other things, that a small perturbation in the program 
code (genetic noise), in the input (environmental noise), or in the state of the executing program 
(processor noise), is likely to produce at most a small degradation in output quality.  In most human-
written code, a small perturbation of any kind usually causes a crash.  Genomes are built by a 
cumulative series of point mutations and random recombinations.  Human-written programs start 
out as high-level goals which are translated, by an extended serial thought process, into code.  A 
perturbation to human-written code perturbs the code's final form, rather than its first cause, and 
the code's final form has no history of successful mutation.  The thoughts that gave rise to the code 
probably have a smooth fitness metric, in the sense that a slight perturbation to the programmer's 
state of mind will probably produce code that is at most a little worse, and possibly a little 
better.  Human thoughts, which are the original source of human-written code, are resilient; the 
code itself is fragile.  

The dream solution would be a programming language in which human-written, top-down code 
somehow had the smooth fitness landscapes that are characteristic of accreted evolved complexity, 
but this is probably far too much to ask of a programming language.  The difference between 
evolution and design runs deeper than the difference between stochastic neural circuitry and fragile 
chip architectures.  On the other hand, using fragile building blocks can't possibly help, so a 
language-level solution might solve at least some of the problem.  

The importance of smooth fitness landscapes holds true for all levels of organization.  Concepts and 
thoughts should not break as the result of small changes.  The code level is being singled out 
because smoothness on the code level represents a different kind of problem than smoothness on 
the higher levels.  On the higher levels, smoothness is a product of correctly designed cognitive 
processes; a learned concept will apply to messy new data because it was abstracted from a messy 
experiential base.  Given that AI complexity lying within the concept level requires smooth fitness 
landscapes, the correct strategy is to duplicate the smoothness on that level - to accept as a high-



 

level design requirement that the AI produce error-tolerant concepts abstracted from messy 
experiential bases.  

On the code level, neural circuitry is smooth and stochastic by the nature of neurons and by the 
nature of evolutionary design.  Human-written programs are sharp and fragile ("crystalline") by the 
nature of modern chip architectures and by the nature of human programming.  The distinction is 
not likely to be erased by programmer effort or new programming languages.  The long-term 
solution might be an AI with a sensory modality for code (see Part III), but that is not likely to be 
attainable in the early stages.  The basic code-level "stuff" of the human brain has built-in support 
for smooth fitness landscapes, and the basic code-level "stuff" of human-written computer 
programs does not.  Where human processes rely on neural circuitry being automatically error-tolerant 
and trainable, it will take additional programmatic work to "port" that cognitive process to a new 
substrate where the built-in support is absent.  The final compromise solution may have error 
tolerance as one explicit design feature among many, rather than error-tolerance naturally emerging 
from the code level.  

There are other important features that are also supported by biological neural networks - that are 
"natural" to neural substrate.  These features probably include:  

• Optimization for recurring problems;  
• Completion of partial patterns;  
• Similarity recognition (detection of static pattern repetition);  
• Recurrence recognition (detection of temporal repetition);  
• Clustering detection, cluster identification, and sorting into identified clusters;  
• Training for pattern recognition and pattern completion;  
• Massive parallelism.  

Again, this does not imply an unbeatable advantage for biological neural networks.  In some cases 
wetware has very poor feature support, relative to contemporary hardware.  Contemporary hardware 
has better support for:  

• Reflectivity and execution traces;  
• Lossless serialization (storage and retrieval) and lossless pattern transformations;  
• Very-high-precision quantitative calculations;  
• Low-level algorithms which involve extended iteration, deep recursion, and complex 

branching;  
• "Massive serialism"; the ability to execute hundreds of millions of sequential steps per second.  

The challenge is using new advantages to compensate for the loss of old advantages, and replacing 
substrate-level support with design-level support.  

This concludes the account of exceptional issues that arise at the code level.  An enumeration of all 
issues that arise at the code level - for example, serializing the current contents of a sensory modality 
for efficient transmission to a duplicate modality on a different node of a distributed network - 
would constitute at least a third of a complete constructive account of a general AI.  But 
programming is not all the work of AI, perhaps not even most of the work of AI; much of the effort 
needed to construct an intelligence will go into prodding the AI into forming certain concepts, 



 

undergoing certain experiences, discovering certain beliefs, and learning various high-level 
skills.  These tasks cannot be accomplished with an IDE.  Coding the wrong thing successfully can 
mess up an AI project worse than any number of programming failures.  I believe that the most 
important skill an AI developer can have is knowing what not to program.  

2.4: The modality level 

2.4.1: The evolutionary design of modalities in humans 

Most students of AI are familiar with the high-level computational processes of at least one human 
sensory modality, vision, at least to the extent of being acquainted with David Marr's "2 1/2D 
world" and the concept of layered feature extraction [Marr82].  Further investigations in 
computational neuroscience have both confirmed Marr's theory and rendered it enormously more 
complex.  Although many writers, including myself, have been known to use the phrase "visual 
cortex" when talking about the entire visual modality, this is like talking about the United States by 
referring to New York.  About 50% of the neocortex of nonhuman primates is devoted exclusively 
to visual processing, with over 30 distinct visual areas identified in the macaque monkey 
[Felleman91].  

The major visual stream is the retinal-geniculate-cortical stream, which goes from the retina to the 
lateral geniculate nucleus to the striate cortex17 to the higher visual areas.  Beyond the visual cortex, 
processing splits into two major secondary streams; the ventral stream heading toward the temporal 
lobe for object recognition, and the dorsal stream heading toward the parietal lobe for spatial 
processing.  The visual stream begins in the retina, which contains around 100 million rods and 5 
million cones, but feeds into an optic cable containing only around 1 million axons.  Visual 
preprocessing begins in the first layer of the retina, which converts the raw intensities into center-
surround gradients, a representation that forms the basis of all further visual processing.  After 
several further layers of retinal processing, the final retinal layer is composed of a wide variety of 
ganglion types that include directionally selective motion detectors, slow-moving edge detectors, fast 
movement detectors, uniformity detectors, and subtractive color channels.  The axons of these 
ganglions form the optic nerve and project to the magnocellular, parvocellular, and koniocellular 
layers of the lateral geniculate nucleus; currently it appears that each class of ganglion projects to 
only one of these layers.  It is widely assumed that further feature detection takes place in the lateral 
geniculate nucleus, but the specifics are not currently clear.  From the lateral geniculate nucleus, the 
visual information stream continues to area V1, the primary visual cortex, which begins feature 
extraction for information about motion, orientation, color and depth.  From primary visual cortex 
the information stream continues, making its way to the higher visual areas, V2 through V6.  Beyond 
the visual cortex, the information stream continues to temporal areas (object recognition) and 
parietal areas (spatial processing).  

As mentioned earlier, primary visual cortex sends massive corticothalamic feedback projections to 
the lateral geniculate nucleus [Sherman86].  Corticocortical connections are also typically 
accompanied by feedback projections of equal strength [Felleman91].  There is currently no standard 
explanation for these feedback connections.  DGI18 requires sensory modalities with feature controllers 
that are the inverse complements of the feature detectors; this fits with the existence of the feedback 
projections.  However, it should be noted that this assertion is not part of contemporary 
neuroscience.  The existence of feature controllers is allowed for, but not asserted, by current theory; 



 

their existence is asserted, and required, by DGI.  (The hypothesis that feedback projections play a 
role in mental imagery is not limited to DGI; for example, [Kosslyn94] cites the existence of 
corticocortical feedback projections as providing an underlying mechanism for higher-level cognitive 
functions to control depictive mental imagery.)  

The general lesson learned from the human visual modality is that modalities are not microtheories, 
that modalities are not flat representations of the pixel level, and that modalities are functionally 
characterized by successive layers of successively more elaborate feature structure.  Modalities are 
one of the best exhibitions of this evolutionary design pattern - ascending layers of adaptive 
complexity - which also appears, albeit in very different form, in the ascending code-modality-
concept-thought-deliberation model of the human mind.  Each ascending layer is more elaborate, 
more complex, more flexible, and more computationally expensive.  Each layer requires the 
complexity of the layer underneath - both functionally within a single organism, and evolutionarily 
within a genetic population.  

The concept layer is evolvable in a series of short steps if, and only if, there already exists substantial 
complexity within the modality layer.  The same design pattern - ascending layers of adaptive 
complexity - also appears within an evolved sensory modality.  The first features detected are simple, 
and can evolve in a single step or a small series of adaptive short steps.  The ability to detect these 
first features can be adaptive even in the absence of a complete sensory modality.  The eye, which is 
currently believed to have independently evolved in many different species, may have begun, each 
time, as a single light-sensitive spot on the organism's skin.  

In modalities, each additional layer of feature detectors makes use of the information provided by 
the first layer of feature detectors.  In the absence of the first layer of feature detectors, the "code" 
for the second layer of feature detectors would be too complex to evolve in one chunk.  With the 
first layer of feature detectors already present, feature detectors in the second layer can evolve in a 
single step, or in a short series of locally adaptive steps.  The successive layers of organization in a 
sensory modality are a beautiful illustration of evolution's design signature, the functional ontogeny 
of the information recapitulating the evolutionary phylogeny.  

Evolution is a good teacher but a poor role model; is this design a bug or a feature?  I would argue 
that it is generally a feature.  There is a deep correspondence between evolutionarily smooth fitness 
landscapes and computationally smooth fitness landscapes.  There is a deep correspondence between 
each successive layer of feature detectors being evolvable, and each successive layer of feature 
detectors being computable in a way that is "smooth" rather than "fragile", as described in the earlier 
discussion of the code layer.  Smooth computations are more evolvable, so evolution, in 
constructing a system incrementally, tends to construct linear sequences or ascending layers of 
smooth operations.  

An AI designer may conceivably discard the requirement that each ascending layer of feature 
detection be incrementally useful/adaptive - although this may make the subsystem harder to 
incrementally develop and test!  It is cognitively important, however, that successive layers of feature 
detectors be computationally "smooth" in one specific sense.  DGI concepts interact with inverse 
feature detectors, "feature controllers", in order to construct mental imagery.  For the task of 
imposing a concept and the still more difficult task of abstracting a concept to be simultaneously tractable, it is 
necessary that sensory modalities be a continuum of locally smooth layers, rather than consisting of 



 

enormous, intractable, opaque chunks.  There is a deep correspondence between the smooth design 
that renders concepts tractable and the smooth architecture emergent from incremental evolution.  

The feature controllers used to create mental imagery are evolvable and preadaptive in the absence 
of mental imagery; feature controllers could begin as top-down constraints in perceptual processing, 
or even more simply as a perceptual step which happens to be best computed by a recurrent 
network.  In both cases, the easiest (most evolvable) architecture is generally one in which the 
feedback connection reciprocates the feedforward connection.  Thus, the feature controller layers 
are not a separate system independent from the feature detector layers; rather, I expect that what is 
locally a feature detector is also locally a feature controller.  Again, this smooth reversibility helps 
render it possible to learn a single concept which can act as a category detector or a category 
imposer.  It is the simultaneous solution of concept imposition, concept satisfaction, concept faceting, and concept 
abstraction that requires reversible features - feature controllers which are the local inverses of the 
feature detectors.  I doubt that feature controllers reach all the way down to the first layers of the 
retina (I have not heard of any feedback connections reaching this far), but direct evidence from 
neuroimaging shows that mental imagery activates primary visual cortex [Kosslyn93]; I am not sure 
whether analogous tests have been performed for the lateral geniculate nucleus, but the feedback 
connections are there.  

2.4.2: The human design of modalities in AI 

An AI needs sensory modalities - but which modalities?  How do those modalities contribute 
materially to general intelligence outside the immediate modality?  

Does an AI need a visuospatial system modeled after the grand complexity of the visuospatial 
system in primates and humans?  We know more about the human visual modality than about any 
other aspect of human neurology, but that doesn't mean we know enough to build a visual modality 
from scratch.  Furthermore, the human visual modality is enormously complex, computationally 
intensive, and fitted to an environment which an AI does not necessarily have an immediate need to 
comprehend.  Should humanlike 3D vision19 be one of the first modalities attempted?  

I believe it will prove best to discard the human modalities or to use them as inspiration only - to use 
a completely different set of sensory modalities during the AI's early stages.  An AI occupies a 
different environment than a human and direct imitation of human modalities would not be 
appropriate.  For an AI's initial learning experiences, I would advocate placing the AI in complex 
virtual environments, where the virtual environments are internal to the computer but external to the 
AI.  The programmers would then attempt to develop sensory modalities corresponding to the 
virtual environments.  Henceforth I may use the term "microenvironment" to indicate a complex 
virtual environment.  The term "microworld" is less unwieldy, but should not be taken as having the 
Good Old-Fashioned AI connotation of "microworlds" in which all features are directly represented 
by predicate logic, e.g., SHRDLU's simplified world of blocks and tables [Winograd72].  

Abandoning the human modalities appears to introduce an additional fragile dependency on the 
correctness of the AI theory, in that substituting novel sensory modalities for the human ones would 
appear to require a correct understanding of the nature of sensory modalities and how they 
contribute to intelligence.  This is true, but I would argue that the existence of an additional 
dependency is illusory.  An attempt to blindly imitate the human visual modality, without 



 

understanding the role of modalities in intelligence, would be unlikely to contribute to general 
intelligence except by accident.  Our modern understanding of the human visual modality is not so 
perfect that we could rely on the functional completeness of a neurologically inspired design; for 
example, a design based only on consensus contemporary theory might omit feature 
controllers!  However, shifting to microworlds does require that experience in the microworlds 
reproduce functionally relevant aspects of experience in real life, including unpredictability, 
uncertainty, real-time process control, holonic (part-whole) organization, et cetera.  I do not believe 
that this introduces an additional dependency on theoretic understanding, over and above the 
theoretic understanding that would be required to build an AI that absorbed complexity from these 
aspects of real-world environments, but it nonetheless represents a strong dependency on theoretic 
understanding.  

Suppose that we are designing, de novo, a sensory modality and virtual environment.  Three possible 
modalities that come to mind as reasonable for a very primitive and early-stage AI, in ascending order of 
implementational difficulty, would be:  

1. A modality for Newtonian billiard balls;  
2. A modality for a 100x100 "Go" board;  
3. A modality for some type of interpreted code (a metaphorical "codic cortex").  

In human vision, the very first visual neurons are the "rods and cones" which transduce impinging 
environmental photons to a neural representation as sensory information.  For each of the three 
modalities above, the "rods and cones" level would probably use essentially the same representation 
as the data structures used to create the microworld, or virtual environment, in which the AI is 
embodied.  This is a major departure from the design of naturally evolved modalities, in which the 
basic level - the quark level, as far as we know - is many layers removed from the high-level objects 
that give rise to the indirect information that reaches the senses.  Evolved sensory modalities devote 
most of their complexity to reconstructing the world that gives rise to the incoming sensory 
impressions - to reconstructing the 3D moving objects that give rise to the photons impinging on 
the rods-and-cones layer of the retina.  Of course, choosing vision as an example is arguably a biased 
selection; sound is not as complex as vision, and smell and taste are not as complex as 
sound.  Nonetheless, eliminating the uncertainty and intervening layers between the true 
environment and the organism's sensory data is a major step.  It should significantly reduce the 
challenges of early AI development, but is a dangerous step nonetheless because of its distance from 
the biological paradigm and its elimination of a significant complexity source.  

I recommend eliminating environmental reconstruction as a complexity source in early AI 
development.  Visualizing the prospect of deliberately degrading the quality of the AI's 
environmental information on one end, and elaborating the AI's sensory modality on the other end, 
I find it likely that the entire operation will cancel out, contributing nothing.  An AI that had to learn 
to reconstruct the environment, in the same way that evolution learned to construct sensory 
modalities, might produce interesting complexity as a result; but if the same programmer is creating 
environmental complexity and modality complexity, I would expect the two operations to cancel 
out.  While environmental reconstruction is a nontrivial complexity source within the human brain, I 
consider the ratio between the difficulty of programmer development of the complexity, and the 
contribution of that complexity to general intelligence, to be relatively small.  Adding complexity for 
environmental reconstruction, by introducing additional layers of complexity in the microworld and 



 

deliberately introducing information losses between the topmost layer of the microworld and the 
AI's sensory receptors, and then attempting to create an AI modality which could reconstruct the 
original microworld content from the final sensory signal, would require a relatively great investment 
of effort in return for what I suspect would be a relatively small boost to general intelligence.  

Suppose that for each of the three modalities - billiards, Go, code - the "pre-retinal" level consists of 
true and accurate information about the quark level of the virtual microworld, although perhaps not 
complete information, and that the essential complexity which renders the model a "sensory 
modality" rests in the feature structure, the ascending layers of feature detectors and descending 
layers of feature controllers.  Which features, then, are appropriate?  And how do they contribute 
materially to general intelligence?  

The usual statement is that the complexity in a sensory modality reflects regularities of the 
environment, but I wish to offer a slightly different viewpoint.  To illustrate this view, I must 
borrow and severely simplify the punchline of a truly elegant paper, "The Perceptual Organization 
of Colors" by Roger Shepard [Shepard92].  Among other questions, this paper seeks to answer the 
question of trichromancy:  Why are there three kinds of cones in the human retina, and not two, or 
four?  Why is human visual perception organized into a three-dimensional color space?  Historically, 
it was often theorized that trichromancy represented an arbitrary compromise between chromatic 
resolution and spatial resolution; that is, between the number of colors perceived and the grain size 
of visual resolution.  As it turns out, there is a more fundamental reason why three color channels 
are needed.  

To clarify the question, consider that surfaces possess a potentially infinite number of spectral 
reflectance distributions.  We will focus on spectral reflectance distributions, rather than spectral 
power distributions, because adaptively relevant objects that emit their own light are 
environmentally rare.  Hence the physically constant property of most objects is the spectral 
reflectance distribution, which combines with the spectral power distribution of light impinging on 
the object to give rise to the spectral power distribution received by the human eye.  The spectral 
reflectance distribution is defined over the wavelengths from 400nm to 700nm (the visible range), 
and since wavelength is a continuum, the spectral reflectance distribution can theoretically require an 
unlimited number of quantities to specify.  Hence, it is not possible to exactly constrain a spectral 
reflectance distribution using only three quantities, which is the amount of information transduced 
by human cones.  

The human eye is not capable of discriminating among all physically possible reflecting 
surfaces.  However, it is possible that for "natural" surfaces - surfaces of the kind commonly 
encountered in the ancestral environment - reflectance for each pure frequency does not vary 
independently of reflectance for all other frequencies.  For example, there might exist some set of 
basis reflectance functions, such that the reflectance distributions of almost all natural surfaces could be 
expressed as a weighted sum of the basis vectors.  If so, one possible explanation for the 
trichromancy of human vision would be that three color channels are just enough to perform 
adequate discrimination in a "natural" color space of limited dimensionality.  

The ability to discriminate between all natural surfaces would be the design recommended by the 
"environmental regularity" philosophy of sensory modalities.  The dimensionality of the internal 
model would mirror the dimensionality of the environment.  



 

As it turns out, natural surfaces have spectral reflectance distributions that vary along roughly five to 
seven dimensions [Maloney86].  There thus exist natural surfaces that, although appearing to 
trichromatic viewers as "the same color", nonetheless possess different spectral reflectance 
distributions.  

[Shepard92] instead asks how many color channels are needed to ensure that the color we perceive is 
the same color each time the surface is viewed under different lighting conditions.  The amount of 
ambient light can also potentially vary along an unlimited number of dimensions, and the actual light 
reaching the eye is the product of the spectral power distribution and the spectral reflectance 
distribution.  A reddish object in bluish light may reflect the same number of photons of each 
wavelength as a bluish object in reddish light.  Similarly, a white object in reddish light may reflect 
mostly red photons, while the same white object in bluish light may reflect mostly blue 
photons.  And yet the human visual system manages to maintain the property of color constancy; the 
same object will appear to be the same color under different lighting conditions.  

[Judd64] measured 622 spectral power distributions for natural lighting, under 622 widely varying 
natural conditions of weather and times of day, and found that variations in natural lighting reduce 
to three degrees of freedom.  Furthermore, these three degrees of freedom bear a close 
correspondence to the three dimensions of color opponency that were proposed for the human 
visual system based on experimental examination [Hurvich57].  The three degrees of freedom are:  

• The light-dark variation, which depends on the total light reaching the object.  
• The yellow-blue variation, which depends on whether a surface is illuminated by direct sunlight 

or is in shade.  In shade the surface is illuminated by the Raleigh-scattered blue light of the 
sky, but is not directly illuminated by the sun.  The corresponding yellow extreme occurs 
when an object is illuminated only by direct sunlight; e.g., if sunlight enters through a small 
channel and skylight is cut off.  

• The red-green variation, which depends on both the elevation of the sun (how much 
atmosphere the sun travels through), and the amount of atmospheric water vapor.  E.g., 
illumination by a red sunset versus illumination at midday.  Red wavelengths are the 
wavelengths least scattered by dust and most absorbed by water.  

The three color channels of the human visual system are precisely the number of channels needed in 
order to maintain color constancy under natural lighting conditions20.  Three color channels are not 
enough to discriminate between all natural surface reflectances, but three color channels are the 
exact number required to compensate for ambient natural lighting and thereby ensure that the same 
surface is perceptually the "same color" on any two occasions.  This simplifies the adaptively 
important task of recognizing a previously experienced object on future encounters.  

The lesson I would learn from this tale of color constancy is that sensory modalities are about 
invariants and not just regularities.  Consider the task of designing a sensory modality for some form of 
interpreted code.  (This is a very challenging task because human programming languages tend 
toward non-smooth fitness landscapes, as previously discussed.)  When considering which features 
to extract, the question I would ask is not "What regularities are found in code?" but rather "What 
feature structure is needed for the AI to perceive two identical algorithms with slightly different 
implementations as 'the same piece of code'?"  Or more concretely:  "What features does this 



 

modality need to extract to perceive the recursive algorithm for the Fibonacci sequence and the 
iterative algorithm for the Fibonacci sequence as 'the same piece of code'?"  

Tip your head slightly to the left, then slightly to the right.  Every retinal receptor may receive a 
different signal, but the experienced visual field remains almost exactly the "same".  Hold up a chess 
pawn, and tip it slightly to the left or slightly to the right.  Despite the changes in retinal reception, 
we see the "same" pawn with a slightly different orientation.  Could a sensory modality for code 
look at two sets of interpreted bytecodes (or other program listing), completely different on a byte-
by-byte basis, and see these two listings as the "same" algorithm in two slightly different 
"orientations"?  

The modality level of organization, like the code level, has a characteristic kind of work that it 
performs.  Formulating a butterfly concept and seeing two butterflies as members of the same 
category is the work of the concept level, but seeing a chess pawn in two orientations as the same 
pawn is the work of the modality level.  There is overlap between the modality level and the concept 
level, just as there is overlap between the code level and the modality level.  But on the whole, the 
modality level is about invariants rather than regularities and identities rather than categories.  

Similarly, the understanding conferred by the modality level should not be confused with the analytic 
understanding characteristic of thoughts and deliberation.  Returning to the example of a codic 
modality, one possible indication of a serious design error would be constructing a modality that 
could analyze any possible piece of code equally well.  The very first layer of the retina - rods and 
cones - is the only part of the human visual system that will work on all possible pixel fields.  The rest 
of the visual system will only work for the low-entropy pixel fields experienced by a low-entropy 
organism in a low-entropy environment.  The very next layer, after rods and cones, already relies on 
center-surround organization being a useful way to compress visual information; this only holds true 
in a low-entropy visual environment.  

Designing a modality that worked equally well for any possible computer program would probably 
be an indication that the modality was extracting the wrong kind of information.  Thus, one should 
be wary of an alleged "feature structure" that looks as if it would work equally well for all possible 
pieces of code.  It may be a valid analytical method but it probably belongs on the deliberation level, 
not the modality level.  (Admittedly not every local step of a modality must be dependent on low-
entropy input; some local stages of processing may have the mathematical nature of a lossless 
transform that works equally well on any possible input.  Also, hardware is probably better suited 
than wetware to lossless transforms.)  

The human brain is constrained by a characteristic serial speed of 200 sequential steps per second, 
and by the ubiquitous internal use of the synchronous arrival of associated information, to arrange 
processing stages that flow smoothly forward.  High-level "if-then" or "switch-case" logic is harder 
to arrive at neurally, and extended complex "if-then" or "switch-case" logic is probably almost 
impossible unless implemented through branching parallel circuitry that remains 
synchronized.  Probably an exceptional condition must be ignored, averaged out, or otherwise 
handled using the same algorithms that would apply to any other modality content. Can an AI 
modality use an architecture that applies different algorithms to different pieces of modality 
content?  Can an AI modality handle exceptional conditions through special-case code?  I would 
advise caution, for several reasons.  First, major "if-then" branches are characteristic of deliberative 



 

processes, and being tempted to use such a branch may indicate a level confusion.  Second, making 
exceptions to the smooth flow of processing will probably complicate the meshing of concepts and 
modalities.  Third, modalities are imperfect but fault-tolerant processes, and the fault tolerance plays 
a role in smoothing out the fitness landscapes and letting the higher levels of organization be built 
on top; thus, trying to handle all the data by detecting exceptional conditions and correcting them, a 
standard pattern in human programming, may indicate that the modality is insufficiently fault-
tolerant.  Fourth, handling all exceptions is characteristic of trying to handle all inputs and not just 
low-entropy inputs.  Hence, on the whole, sensory modalities are characterized by the smooth flow 
of information through ascending layers of feature detectors.  Of course, detecting an exceptional 
condition as a feature may turn out to be entirely appropriate!  

Another issue which may arise in artificial sensory modalities is that unsophisticated artificial 
modalities may turn out to be significantly more expensive, computationally, for the effective 
intelligence they deliver.  Sophisticated evolved modalities conserve computing power in ways that 
might be very difficult for a human programmer to duplicate.  An example would be the use of 
partial imagery, modeling only the features that are needed for a high-level task [Hayhoe98]; a 
simplified modality that does not support partial imagery may consume more computing 
power.  Another example would be the human visual system's selective concentration on the center 
of the visual field - the "foveal architecture", in which areas of the visual field closer to the center are 
allocated a greater number of neurons.  The cortical magnification factor for primates is inverse-
linear [Tootell85]; the complex logarithm is the only two-dimensional map function that has this 
property [Schwartz77], as confirmed experimentally by [Schwartz89].  A constant-resolution version 
of the visual cortex, with the maximum human visual resolution across the full human visual field, 
would require 10,000 times as many cells as our actual cortex [Rojer90].  

But consider the programmatic problems introduced by the use of a logarithmic map.  Depending 
on where an object lies in the visual field, its internal representation on a retinotopic map will be 
completely different; no direct comparison of the data structures would show the identity or even 
hint at the identity.  That an off-center object in our visual field can rotate without perceptually 
distorting, as its image distorts wildly within the physical retinotopic map, presents a nontrivial 
computational problem21.  

Evolution conserves computing power by complicating the algorithm.  Evolution, considered as a 
design pressure, exerts a steady equipotential design pressure across all existing complexity; a human 
programmer wields general intelligence like a scalpel.  It is not much harder for evolution to 
"design" and "debug" a logarithmic visual map because of this steady "design pressure"; further 
adaptations can build on top of a logarithmic visual map almost as easily as a constant-resolution 
map.  A human programmer's general intelligence would run into difficulty keeping track of all the 
simultaneous design complications created by a logarithmic map.  It might be possible, but it would 
be difficult, especially in the context of exploratory research; the logarithmic map transforms simple 
design problems into complex design problems and hence transforms complex design problems into 
nightmares.  

I would suggest using constant-resolution sensory modalities during the early stages of an AI - as 
implied above by suggesting a sensory modality modeled around a 100x100 Go board - but the 
implication is that these early modalities will be lower-resolution, will have a smaller field, and will be 
less efficient computationally.  An opposing theoretic view would be that complex but efficient 



 

modalities introduce necessary issues for intelligence.  An opposing pragmatic view would be that 
complex but efficient modalities are easier to accommodate in a mature AI if they have been 
included in the architecture from the beginning, so as to avoid metaphorical "Y2K" issues 
(ubiquitous dependencies on a simplifying assumption which is later invalidated).  

2.5: The concept level 

DGI uses the term concept to refer to the mental stuffs underlying the words that we combine into 
sentences; concepts are the combinatorial building blocks of thoughts and mental imagery.  These 
building blocks are learned complexity, rather than innate complexity; they are abstracted from 
experience.  Concept structure is absorbed from recurring regularities in perceived reality.  

A concept is abstracted from experiences that exist as sensory patterns in one or more 
modalities.  Once abstracted, a concept can be compared to a new sensory experience to determine 
whether the new experience satisfies the concept, or equivalently, whether the concept describes a facet 
of the experience.  Concepts can describe both environmental sensory experience and internally 
generated mental imagery.  Concepts can also be imposed on current working imagery.  In the 
simplest case, an exemplar associated with the concept can be loaded into the working imagery, but 
constructing complex mental imagery requires that a concept target a piece of existing mental 
imagery, which the concept then transforms.  Concepts are faceted; they have internal structure and 
associational structure which comes into play when imposition or description encounters a bump in 
the road.  Faceting can also be invoked purposefully; for example, "tastes like chocolate" versus 
"looks like chocolate".  

A "concept kernel" is the pseudo-sensory pattern produced by abstracting from sensory 
experience.  During concept satisfaction, this kernel interacts with the layered feature detectors to 
determine whether the reported imagery matches the kernel; during concept imposition, the kernel 
interacts with the layered feature controllers to produce new imagery or alter existing imagery.  A 
programmer seeking a good representation for concept kernels must find a representation that 
simultaneously fulfills these requirements:  

• (a)  The kernel representation can be satisfied by and imposed on referents in a sensory modality.  
• (b)  The kernel representation or concept representation contains the internal structure 

needed for faceted concept combination, as in "triangular lightbulb" previously given as an 
example.  

• (c)  It is computationally tractable to abstract new kernel representations using sensory 
experience as raw material.  

It would be a serious challenge to solve any one of these problems individually, with sufficient 
generality and using a computationally tractable method; solving all three problems simultaneously is 
the fundamental challenge of building a system that learns complexity in combinatorial chunks.  

Concepts have other properties besides their complex kernels.  Kernels relate concepts to sensory 
imagery and hence to the modality level.  Concepts also have complexity that relates to the concept 
level; i.e., concepts have complexity that derives from their relation to other concepts.  In Good 
Old-Fashioned AI this aspect of concepts has been emphasized at the expense of all others22, but 
this is no excuse for ignoring concept-concept relations in a new theory.  For example, concepts are 



 

supercategories and subcategories of each other; there are concepts that describe concepts; there are 
concepts that describe relations between concepts; there are mutually exclusive concepts which 
cannot simultaneously describe the same referent.  (Further examples of concept relations are given 
later.)  

In formal logic, the traditional idea of concepts is that concepts are categories defined by a set of 
individually necessary and together sufficient requisites; that a category's extensional referent is the 
set of events or objects that are members of the category; and that the combination of two 
categories is the sum of their requisites and hence the intersection of their sets of referents.  This 
formulation is inadequate to the complex, messy, overlapping category structure of reality and is 
incompatible with a wide range of established cognitive effects [Lakoff87].  Properties such as usually 
necessary and usually sufficient requisites, and concept combinations that are sometimes the sum of 
their requisites or the intersection of their extensional classes, are emergent from the underlying 
representation of concepts - along with other important properties, such as prototype effects in 
which different category members are assigned different degrees of typicality [Rosch78].  

Concepts relate to the thought level primarily in that they are the building blocks of thoughts, but 
there are other level-crossings as well.  Introspective concepts can describe beliefs and thoughts and 
even deliberation; the concept "thought" is an example.  Inductive generalizations are often "about" 
concepts in the sense that they apply to the referents of a concept; for example, "Triangular 
lightbulbs are red."  Deliberation may focus on a concept in order to arrive at conclusions about the 
extensional category, and introspective deliberation may focus on a concept in its role as a cognitive 
object.  Concept structure is ubiquitously invoked within perceptual and cognitive processes because 
category structure is ubiquitous in the low-entropy processes of our low-entropy universe.  

2.5.1: The substance of concepts 

One of the meanings of "abstraction" is "removal"; in chemistry, to abstract an atom means 
subtracting it from a molecular group.  Using the term "abstraction" to describe the process of 
creating concepts could be taken as implying two views:  First, that to create a concept is to 
generalize; second, that to generalize is to lose information.  Abstraction as information loss is 
implicit in the classical view of concepts (that is, the view of concepts under GOFAI and formal 
logic).  Forming the concept "red" is taken to consist of focusing only on color, at the expense of 
other features such as size and shape; all concept usage is held to consist of purposeful information-
loss.  

The problem with the classical view is that it allows only a limited repertoire of concepts.  True, 
some concepts apparently work out to straightforward information-loss.  The task of arriving at a 
concept kernel for the concept "red" - a kernel capable of interacting with visual imagery to 
distinguish between red objects and non-red objects - is relatively trivial.  Even simultaneously 
satisfying the abstraction and satisfaction problems for "red" is relatively trivial.  Well-known, fully 
general tools such as neural nets or evolutionary computation would suffice.  To learn to solve the 
satisfaction problem, a neural net need only to learn to fire when the modality-level feature detectors 
for "color" report a certain color - a point falling within a specific volume of color space - across a 
broad area, and not to fire otherwise.  A piece of code need only evolve to test for the same 
characteristic.  (The neural net would probably train faster for this task.)  



 

A sufficiently sophisticated modality would simplify the task even further, doing most of the work 
of grouping visual imagery into objects and detecting solid-color or same-hue or mostly-the-same-
hue surfaces.  The human visual modality goes still farther and precategorizes colors, dividing them 
up into a complex color space [Boynton87], said color space having eleven culturally universal focal 
volumes [Berlin69], said focal volumes having comparatively sharp internal boundaries relative to 
physically continuous variations in wavelength (see [Shepard92], or just look at the bands in a 
rainbow).  Distinguishing across innate color boundaries is easy; distinguishing within color 
boundaries is hard [Mervis75].  Thus, the human visual modality provides very strong suggestions as 
to where the boundaries lie in color space, although the final step of categorization is still required 
[Dedrick98].  

Given a visual modality, the concept of red lies very close to the metaphorical "surface" of the 
modality.  In humans red is probably at the surface, a direct output of the modality's feature-
detectors.  In AIs with less sophisticated visual modalities, "redness" as a category would need to be 
abstracted as a fuzzy volume within a smooth color space lacking the human boundaries.  The red 
concept kernel (in humans and AIs) needs to be more complex than a simple binary test or fuzzy 
color clustering test, since "redness" as we understand it describes visual areas and not single pixels 
(although red can describe a "visual area" consisting of a small point).  Even so, the complexity 
involved in the redness concept lies almost entirely within the sensory modality, rather than the 
concept kernel.  We might call such concepts surface concepts.  

Even for surface concepts, simultaneously solving abstraction, satisfaction, and imposition would 
probably be far more tractable with a special representation for concept kernels, rather than 
generically trained neural nets or evolutionary programs.  Imposition requires a concept kernel 
which can be selectively applied to imagery within a visual modality, transforming that imagery such 
that the final result satisfies the concept.  In the case of the concept "red", the concept kernel would 
interact with the feature controllers for color, and the targeted mental imagery would become 
red.  This cannot be done by painting each individual pixel the same shade of red; such a 
transformation would obliterate edges, surfaces, textures, and many other high-level features that 
intuitively ought to be preserved.  Visualizing a "red lemon" does not cause the mind to picture a 
bright red patch with the outline of a lemon.  The concept kernel does not send separate color 
commands to the low-level feature controller of each individual visual element; rather the concept 
kernel imposes red in combination with other currently activated features, to depict a red lemon that 
retains the edge, shape, surface curvature, texture, and other visualized features of the starting lemon 
image.  Probably this occurs because perceived coloration is a property of surfaces and visual objects 
rather than, or as well as, individual visual elements, and our redness concept kernel interacts with 
this high-level feature, which then ripples down in coherent combination with other features.  

Abstracting an impose-able concept kernel for "red" is a problem of different scope than abstracting 
a satisfy-able kernel for "red".  There is an immediately obvious way to train a neural net to detect 
satisfaction of "red", given a training set of known "red" and non-"red" experiences, but there is no 
equally obvious teaching procedure for the problem of imposing "red".  The most straightforward 
success metric is the degree to which the transformed imagery satisfies a neural network already 
trained to detect "red", but a bright red lemon-shaped patch is likely to be more "red" than a 
visualized red lemon.  How does the kernel arrive at a transformation which makes a coherent 
change in object coloration, rather than a transformation which paints all visual elements an 



 

indiscriminate shade of red, or a transformation which loads a random red object into 
memory?  Any of these transformations would satisfy the "red" concept.  

Conceivably fully general neural nets could be trained to impose minimal transformations, although I 
am not sure that "minimal transformation" is the rule which should govern concept 
imposition.  Regardless of the real tractability of this problem, I strongly doubt that human cognitive 
systems create concepts by training generic neural nets on satisfaction and imposition.  I suspect that 
concepts do not have independent procedures for satisfaction and imposition; I also suspect that 
neither satisfaction nor imposition are the product of reinforcement learning on a fully general 
procedure.  Rather, I suspect that a concept kernel consists of a pattern in a representation related to 
(but not identical with) the representation of sensory imagery, that this pattern is produced by 
transforming the experiences from which the concept is abstracted, and that this pattern interacts 
with the modality to implement both concept satisfaction and concept imposition.  

A very simple example of a non-procedural, pattern-based concept kernel would be "clustering on a 
single feature".  Red might be abstracted from an experiential base by observing an unusual 
clustering of point values for the color feature.  Suppose that the AI is challenged with a virtual game 
in which the goal is to find the "keys" to a "lock" by selecting objects from a large sample set.  When 
the AI successfully passes five trials by selecting the correct object on the first try, the AI is assumed 
to have learned the rule.  Let us suppose that the game rule is that "red" objects open the lock, and 
that the AI has already accumulated an experiential base from its past failures and successes on 
individual trials.  

Assuming the use of a three-dimensional color space, the color values of the correct keys would 
represent a tight cluster relative to the distribution among all potential keys.  Hence the abstracted 
concept kernel might take the form of a feature-cluster pair, where the feature is color and the cluster 
is a central point plus some measure of standard deviation.  This creates a concept kernel with a 
prototype and quantitative satisfiability; the concept has a central point and fuzzy but real 
boundaries.  The same concept kernel can also be imposed on a selected piece of mental imagery by 
loading the central color point into the color feature controller - that is, loading the clustered value 
into the feature controller corresponding to the feature detector clustered upon.  

Clustering of this type also has indirect implications for concept-concept relations:  The red 
concept's "color volume" might overlap a nearby concept such as burgundy, or might turn out to 
enclose that concept; a modality-level fact which over time might naturally give rise to an association 
relationship, or a supercategory relationship, on the concept level.  This would not humanly occur 
through direct comparison of the representations of the concept kernels, but through the 
observation of overlap or inclusion within the categories of extensional referents.  A more strongly 
introspective AI might occasionally benefit from inspecting kernel representations, but this should 
be an adjunct to experiential detection of category relationships, not a substitute for it.  

Clustering on a single feature is definitely not a complete conceptual system.  Single-feature 
clustering cannot notice a correlation between two features where neither feature is clustered alone; 
single-feature clustering cannot cross-correlate two features in any way at all.  Concepts which are 
limited to clustering on a single feature will always be limited to concepts at the immediate surface of 
a given sensory modality.  



 

At the same time, a concept system is not a general intelligence and need not be capable of 
representing every possible relation.  Suppose a human were challenged with a game in which the 
"correct key" always had a color that lay on the exact surface of a sphere in color space; could the 
human concept-formation system directly abstract this property?  I would guess not; I would guess 
that, at most, a human might notice that the key tended to belong to a certain group of colors; i.e., 
might slice up the surface of this color sphere into separate regions, and postulate that solution keys 
belong to one of several color regions.  Thus, even though in this case the underlying "rule" is 
computationally very simple, it is unlikely that a human will create a concept that directly incorporates 
the rule; it may even be impossible for a human to abstract a kernel that performs this simple 
computation.  A concept-formation system need not be generally intelligent in itself; need not 
represent all possible perceptual regularities; just enough for the overall mind to work.  

I suspect that the system design used by humans, and a good design for AIs, will turn out to be a 
repertoire of different concept-formation methods.  ("Clustering on a single feature" could be one 
such method, or could be a special case of a more general method.)  Concept faceting could then 
result either from concepts with multiple kernels, so that a concept employs more than one 
categorization method against its perceptual referents, or from internal structure in a single kernel, 
or both.  If some aspects of perceptual referents are more salient, then kernels which match those 
aspects are likely to have greater weight within the concept.  Faceting within a concept, arising out of 
multiple unequal kernels or faceting within a single complex kernel, seems like the most probable 
source of prototype effects within a category.  

2.5.2: Stages in concept processes 

Concept formation is a multi-stage process.  For an AI to form a new concept, the AI must have the 
relevant experiences, perceptually group the experiences, notice possible underlying similarities 
within members of a group (this may be the same perceived similarity that led to the original 
experiential grouping), verify the generalization, initiate the new concept as distinguished cognitive 
content, create the concept kernel(s) by abstraction from the experiential base, and integrate the new 
concept into the system.  (This checklist is intended as an interim approximation; actual mind 
designs may differ, but presumably a temporal sequence will still be involved.)  

In the example given earlier, an AI abstracts redness starting with a bottom-up, experience-driven 
event: noticing the possible clustering of the color feature within the preexisting category 
keys.  Conceivably the act of checking for color clustering could have been suggested top-down, for 
example by some heuristic belief, but in this example we will assume the seminal perception of 
similar coloration was an unexpected, bottom-up event; the product of continuous and automatic 
checks for clustering on a single feature across all high-level features in currently salient experiential 
categories.  Rather than being part of an existing train of thought, the detection of clustering creates 
an "Aha!" event, a new cognitive event with high salience that becomes the focus of attention, 
temporarily shunting aside the previous train of thought.  (See the discussion of the thought level.)  

If the scan for clustering and other categorizable similarities is a continuous background task, it may 
imply a major expenditure of computational resources - perhaps a major percentage of the 
computing power used by the AI.  This is probably the price of having a cognitive process that can 
be driven by bottom-up interrupts as well as top-down sequences, and the price of having a 
cognitive process that can occasionally notice the unexpected.  Hence, the efficiency, optimization, 



 

and scalability of algorithms for such continuous background tasks may play a major role in 
determining the AI's performance.  If imagery stays in place long enough, I would speculate that it 
may be possible to farm out the task of noticing a possible clustering to distant parts of a distributed 
network, while keeping the task of verifying the clustering, and all subsequent cognitive actions, within 
the local process.  Most of the computing power is required to find the hint, not to verify the match, 
and a false hint does no damage (assuming the false hints are not malicious attacks from untrusted 
nodes).  

Once the suspicion of similarity is triggered by a cue picked up by a continuous background process, 
and the actual degree of similarity is verified, the AI would be able to create the concept as cognitive 
content.  Within the above example, the process that notices the possible clustering is essentially the 
same process that would verify the clustering and compute the degree of clustering, center of 
clustering, and variance within the cluster.  Thus, clustering on a single feature may compress into a 
single stage the cueing, description, and abstraction of the underlying similarity.  Given the expense 
of a continuous background process, however, I suspect it will usually be best to separate out a less 
expensive cueing mechanism as the background process, and use this cueing mechanism to suggest 
more detailed and expensive scans.  (Note that this is a "parallel terraced scan"; see [Rehling97] and 
[Hofstadter95].)  

After the creation of the concept and the concept kernel(s), it would then be possible for the AI to 
notice concept-concept relations, such as supercategory and subcategory relations.  I do not believe 
that concept-concept relations are computed by directly comparing kernel representations; I think 
that concept-concept relations are learned by generalizing across the concept's usage.  It may be a 
good heuristic to look for concept-concept relations immediately after forming a new concept, but 
that would be a separate track within deliberation, not an automatic part of concept formation.  

After a concept has been formed, the new concept must be integrated into the system.  For us to 
concede that a concept has really been "integrated into the system" and is now contributing to 
intelligence, the concept must be used.  Scanning across the stored base of concepts, in order to find 
which concepts are satisfied by current mental imagery, promises to be an even more 
computationally expensive process than continuous background checks for clustering.  An individual 
satisfaction check is probably less computationally intensive than carrying out a concept imposition - 
but satisfaction checks seem likely to be a continuous background operation, at least in humans.  

As discussed earlier, humans and AIs have different computational substrates:  Humans are slow but 
hugely parallel; AIs are fast, but resource-poor.  If humans turn out to routinely parallelize against all 
learned concepts, an AI may simply be unable to afford it.  The AI optimum may involve comparing 
working imagery against a smaller subset of learned complexity - only a few concepts, beliefs, or 
memories would be scanned against working imagery at any given point.  Alternatively, an AI may 
be able to use terraced scanning23, fuzzy hashing24, or branched sorting25 to render the problem 
tractable.  One hopeful sign is the phenomenon of cognitive priming on related concepts [Meyer71], 
which suggests that humans, despite their parallelism, are not using pure brute force.  Regardless, I 
conjecture that matching imagery against large concept sets will be one of the most computationally 
intensive subprocesses in AI, perhaps the most expensive subprocess.  Concept matching is hence 
another good candidate for distribution under "notice distantly, verify locally"; note also that the 
concept base could be sliced up among distributed processors, although this might prevent matching 
algorithms from exploiting regularities within the concept base and matching process.  



 

2.5.3: Complex concepts and the structure of "five" 

Under the classical philosophy of category abstraction, abstraction consists solely of selective focus 
on information which is already known; focusing on the "color" or "redness" of an object as 
opposed to its shape, position, or velocity.  In DGI's "concept kernels", the internal representation 
of a concept has complexity extending beyond information loss - even for the case of "redness" and 
other concepts which lie almost directly on the surface of a sensory modality.  The only concept that 
is pure information-loss is a concept that lies entirely on the surface of a modality; a concept whose 
satisfaction exactly equals the satisfaction of some single feature detector.  

The concept for "red", described earlier, is actually a fuzzy percept for degrees of redness.  Given 
that the AI has a flat color space, rather than a human color space with innate focal volumes and 
color boundaries, the "redness" percept would contain at least as much additional complexity - over 
and above the modality-level complexity - as is used to describe the clustering.  For example, 
"clustering on a single feature" might take the form of describing a Gaussian distribution around a 
central point.  The specific use of a Gaussian distribution does not contribute to useful intelligence 
unless the environment also exhibits Gaussian clustering, but a Gaussian distribution is probably 
useful for allowing an AI to notice a wide class of clusterings around a central point, even clusterings 
that do not actually follow a Gaussian distribution.  

Even in the absence of an immediate environmental regularity, a concept can contribute to effective 
intelligence by enabling the perception of more complex regularities.  For example, an alternating 
sequence of "red" and "green" key objects may fail the modality-level tests for clustering because no 
Gaussian cluster contains (almost) all successes and excludes (almost) all failures.  However, if the 
AI has already previously developed concepts for "red" and "green", the alternating repetition of the 
satisfaction of the "red" and "green" concepts is potentially detectable by higher-level repetition 
detectors.  Slicing up the color space with surface-level concepts renders computationally tractable 
the detection of higher-order alternation.  Even the formation of simple concepts - concepts lying 
on the surface of a modality - expands the perceptual capabilities of the AI and the range of 
problems the AI can solve.  

Concepts can also embody regularities which are not directly represented in any sensory modality, 
and which are not any covariance or clustering of feature detectors already in a sensory modality.  

Melanie Mitchell and Douglas Hofstadter's "Copycat" program works in the domain of letter-strings, 
such as "abc", "xyz", "onml", "ddd", "cwj", etc.  The function of Copycat is to complete analogy 
problems such as "abc:abd::ace:?"  [Hofstadter88].  Since Copycat is a model of perceptual analogy-
making, rather than a model of category formation, Copycat has a limited store of preprogrammed 
concepts and does not learn further concepts through experience.  (This should not be taken as 
criticism of the Copycat project; the researchers explicitly noted that concept formation was not 
being studied.)  

Suppose that a general AI (not Copycat), working in the toy domain of letter strings, encounters a 
problem that can only be solved by discovering what makes the letter-strings "hcfrb", "yhumd", 
"exbvb", and "gxqrc" similar to each other but dissimilar to the strings "ndaxfw", "qiqa", "r", "rvm", 
and "zinw".  Copycat has the built-in ability to count the letters in a string or group; in DGI's terms 
Copycat might be said to extract number as a modality-level feature.  There is extensive evidence that 



 

humans also have brainware support for subitizing (directly perceiving) small numbers, and 
brainware support for perceiving the approximate quantities of large numbers (see [Dehaene97] for 
a review).  Suppose, however, that a general AI does not possess a modality-level counting 
ability.  How would the AI go about forming the category of "five", or even "groups-of-five-letters"?  

This challenge points up the inherent deficit of the "information loss" viewpoint of abstraction.  For 
an AI with no subitization support - or for a human challenged with a number like "nine", which is 
out-of-range for human subitization - the distinguishing feature, cardinality, is not represented by the 
modality (or in humans, represented only approximately).  For both humans and AIs, the ability to 
form concepts for non-subitizable exact numbers requires more than the ability to selectively focus 
on the facet of "number" rather than the facet of "location" or "letter" (or "color", "shape", or 
"pitch").  The fundamental challenge is not focusing on the numerical facet but rather perceiving a 
"numerical facet" in the first place.  For the purposes of this discussion, we are not speaking of the 
ability to understand numbers, arithmetic, or mathematics, only an AI's ability to form the category 
"five".  Possession of the category "five" does not even imply the possession of the categories "four" 
or "six", much less the formulation of the abstract supercategory "number".  

Similarly, the "discovery" of fiveness is not being alleged as mathematically significant.  In 
mathematical terms almost any set of cognitive building blocks will suffice to discover numbers; 
numbers are fundamental and can be constructed through a wide variety of different surface 
procedures.  The significant accomplishment is not "squeezing" numbers out of a system so sparse 
that it apparently lacks the usual precursors of number.  Rather, the challenge is to give an account 
of the discovery of "fiveness" in a way that generalizes to the discovery of other complex concepts 
as well.  The hypothesized building blocks of the concept should be general (useful in building other, 
non-numerical concepts), and the hypothesized relations between building blocks should be 
general.  It is acceptable for the discovery of "fiveness" to be straightforward, but the discovery 
method must be general.  

A working but primitive procedure for satisfying the "five" concept, after the discovery of fiveness, 
might look something like this:  Focus on a target group (the group which may or may not satisfy 
"five").  Retrieve from memory an exemplar for "five" (that is, some specific past experience that 
has become an exemplar for the "five" concept).  Picture the "five" exemplar in a separate mental 
workspace.  Draw a correspondence from an object within the group that is the five exemplar to an 
object within the group that is the target.  Repeat this procedure until there are no objects remaining 
in the exemplar imagery or there are no objects remaining in the target imagery.  Do not draw a 
correspondence from one object to another if a correspondence already exists.  If, when this 
procedure completes, there are no dangling objects in the exemplar or in the target group, label the 
target group as satisfying the "five" concept.  

In this example, the "five" property translates to the property:  "I can construct a complete mapping, 
with no dangling elements, using unique correspondences, between this target group of objects, and 
a certain group of objects whose mental image I retrieved from memory."  

This is mathematically straightforward, but cognitively general.  In support of the proposition that 
"correspondence", "unique correspondence", and "complete mapping with no dangling elements" 
are all general conceptual primitives, rather than constructs useful solely for discovering numbers, 
please note that Copycat incorporates correspondences, unique correspondences, and a perceptual 



 

drive toward complete mappings [Mitchell93].  Copycat has a direct procedural implementation of 
number sense and does not use these mapping constructs to build numerical concepts.  The 
mapping constructs I have invoked for number are independently necessary for Copycat's theory of 
analogy-making as perception.  

Once the procedure ends by labeling imagery with the "five" concept, that imagery becomes an 
experiential instance of the "five" concept.  If the examples associated with a procedurally defined 
concept have any universal features or frequent features that are perceptually noticeable, the concept 
can acquire kernels after the fact, although the kernel may express itself as a hint or as an 
expectation, rather than being a necessary and sufficient condition for concept 
satisfaction.  Concepts with procedural definitions are regular concepts and may possess kernels, 
exemplars, associated memories, and so on.  

What is the benefit of decomposing "fiveness" into a complex procedure, rather than simply writing 
a codelet, or a modality-level feature detector, which directly counts (subitizes) the members of a 
group?  The fundamental reason for preferring a non-modality solution in this example is to 
demonstrate that an AI must be capable of solving problems that were not anticipated during 
design.  From this perspective "fiveness" is a bad example to use, since it would be very unlikely for 
an AI developer to not anticipate numericity during the design phase.  

However, a decomposable concept for "five", and a modality-level feature detector which subitizes 
all numbers up to (232 - 1), can also be compared in terms of how well they support general 
intelligence.  Despite its far greater computational overhead, I would argue that the decomposable 
concept is superior to a modality-level feature detector.  

A billiards modality with a feature detector that subitizes all the billiard balls in a perceptual grouping 
and outputs a perceptually distinct label - a "numeron detector" - will suffice to solve many 
immediate problems that require a number sense.  However, an AI that uses this feature detector to 
form a surface concept for "five" will not be able to subitize "five" groups of billiards within a 
supergroup, unless the programmer also had the foresight to extend the subitizing feature detector 
to count groups as well as specific objects26.  Similarly, this universal subitizing ability will not extend 
across multiple modalities, unless the programmer had the foresight to extend the feature detector 
there as well27.  Brainware is limited to what the programmer was thinking about at the time.  Does 
an AI understand "fiveness" when it becomes able to count five apples?  Or when the AI can also 
count five events in two different modalities?  Or when the AI can count five of its own 
thoughts?  It is programmatically trivial to extend the feature detector to handle any of these as a 
special case, but that is a path which ends in requiring an infinite amount of tinkering to implement 
routine thought processes (i.e., non-decomposability causes a "commonsense problem").  

The most important reason for decomposability is that concepts with organized internal structures 
are more mutable.  A human-programmed numeron detector, mutated on the code level, would 
probably simply break.  A concept with internal structure or procedural structure, created by the AI's 
own thought processes in response to experience, is mutable by the AI's thought processes in 
response to further experience.  For example, Douglas Lenat attests (see [Lenat83] and [Lenat84]) 
that the most difficult part of building EURISKO28 was inventing a decomposable representation 
for heuristics, so that the class of transformations accessible to EURISKO would occasionally result 
in improvements rather than broken code fragments and LISP errors.  To describe this as smooth 



 

fitness landscapes is probably stretching the metaphor too much, but "smoothing" in some form is 
definitely involved.  Raw code has only a single level of organization, and changing a random 
instruction on this level usually simply breaks the overall function.  A EURISKO heuristic was 
broken up into chunks, and could be manipulated (by EURISKO's heuristics) on the chunk level.  

Local shifts in the chunks of the "five"-ness procedure yield many useful offspring.  By selectively 
relaxing the requirement of "no dangling objects" in the target image, we get the concept "less than 
or equal to five"-ness.  By relaxing the requirement of "no dangling objects" in the exemplar image, 
we get the concept "greater than or equal to five"-ness.  By requiring one or more dangling objects 
in the target image, we get the concept "more than five"-ness.  By comparing two target images, 
instead of an exemplar and an image, we get the concept "one-to-one correspondence between 
group members" (what we would call "same-number-as" under a different procedure), and from 
there "less than" or "less than or equal to", and so on.  

One of these concepts, the one-to-one correspondence between two mental images, is not just a 
useful offspring of the "fiveness" concept, but a simpler offspring.  Thus it is probably not an 
"offspring" at all, but a prerequisite concept that suggests a real-world path to the apprehension of 
fiveness.  Many physical tasks in our world require equal numbers (corresponding sets) for some 
group; four pegs for four holes, two shoes for two feet.  

2.5.4: Experiential pathways to complex concepts. 

Consider the real-world task of placing four pegs in four holes.  A peg cannot fill two holes; two 
pegs will not fit in one hole.  Solid objects cannot occupy the same location, cannot appear in 
multiple locations simultaneously, and do not appear or disappear spontaneously.  These rules of the 
physical environment are reflected in the default behaviors of our own visuospatial modality; even 
early infants represent objects as continuous and will look longer at scenes which imply continuity 
violations [Spelke90].  

From real-world problems such as pegs and holes, or their microworld analogues, an AI can develop 
concepts such as unique correspondence: a peg cannot fill multiple holes, multiple pegs will not fit in one 
hole.  The AI can learn rules for drawing a unique correspondence, and test the rules against experience, 
before encountering the need to form the more complex concept for "fiveness".  The presence of an 
immediate, local test of utility means that observed failures and successes can contribute 
unambiguously to forming a concept that is "simple" relative to the already-trained base of 
concepts.  If a new concept contains many new untested parts, and a mistake occurs, then it may be 
unclear to the AI which local error caused the global failure.  If the AI tries to chunk "fiveness" all in 
a single step, and the current procedure for "fiveness" satisfaction fails - is positively satisfied by a 
non-five-group, or unsatisfied by a five-group - it may be unclear to the AI that the global failure 
resulted from the local error of a nonunique correspondence.  

The full path to fiveness would probably involve:  

1. Learning physical continuity; acquiring expectations in which objects do not spontaneously 
disappear or reappear.  In humans, this viewpoint is likely very strongly supported by 
modality-level visuospatial intuitions in which continuity is the default, and the same should 
hold true of AIs.  



 

2. Learning unique correspondence.  Unique correspondence, as a mental skill, tends to be 
reinforced by any goal-oriented challenge in which a useful object cannot be in two places at 
once.  

3. Learning complete mapping.  Completeness, along with symmetry, is one of the chief cognitive 
pressures implemented by Copycat in its model of analogy-making as a perceptual operation 
[Mitchell93].  A drive toward completeness implies that dangling, unmapped objects detract 
from the perceived "goodness" of a perceptual mapping.  Thus, there may be modality-level 
support for noticing dangling, unmapped objects within an image.  

4. With these three underlying concepts present, it is possible to abstract the concept of complete 
mapping using the unique-correspondence relation, also known as one-to-one mapping.  We, using an 
entirely different procedure, would call this relation same-number-as ("identity of numeron 
produced by counting").  

5. With one-to-one mapping, it is possible for an AI to notice that all the answers on a challenge 
task are related to a common prototype by the one-to-one mapping relation.  The AI could then 
abstract the "five" concept using the prototype as the exemplar and the relation as a test.  

6. Where do we go from here?  Carl Feynman (personal communication) observes at this point 
that the one-to-one mapping relation is commutative and transitive, and therefore defines a set 
of equivalence classes; these equivalence classes turn out to be the natural numbers.  At first, 
using "equivalence class detection" as a cognitive method sounded like cheating, but on 
reflection it's hard to see why a general intelligence should not notice when objects with a 
common relation to a prototype are similarly related to each other.  "Equivalence class" may 
be a mathematical concept that happens to roughly (or even exactly) correspond to a 
perceptual property.  

7. Forming the superclass concept of number is not dealt with in this paper, due to space 
constraints.  

A deliberative intelligence must build up complex concepts from simple concepts, in the same way 
that evolution builds high-level feature detectors above low-level feature detectors, or builds organs 
using tissues, or builds thoughts over concepts or modalities.  There are holonic29 ecologies within 
the learned complexity of concepts, in the same way and for roughly the same reason that there is 
genetically specified holonic structure in modality-level feature detection.  Categories describe 
regularities in perception, and in doing so, become part of the perceptual structure in which further 
regularities are detected.  

If the programmer hardwires a subitizer that outputs numerons (unique number tags) as detected 
features, the AI may be able to chunk "five" very rapidly, but the resulting concept will suffer from 
opacity and isolation.  The concept will not have the lower levels of organization that would enable the 
AI's native cognitive abilities to disassemble and reassemble the concept in useful new shapes; the 
inability of the AI to decompose the concept is opacity.  The concept will not have a surrounding 
ecology of similar concepts and prerequisite concepts, such as would result from natural knowledge 
acquisition by the AI.  Cognitive processes that require well-populated concept ecologies will be 
unable to operate; an AI that has "triangle" but not "pyramid" is less likely to successfully visualize 
"triangular lightbulb".  This is isolation.  

2.5.5: Microtasks 



 

In the DGI model of AI development, concepts are abstracted from an experiential base; 
experiences are cognitive content within sensory modalities; and sensory modalities are targeted on a 
complex virtual microenvironment.  Learning a concept requires (necessary, but not sufficient) 
having experiences from which to abstract the concept.  How does an AI obtain these 
experiences?  It would be possible to teach the AI about "fiveness" simply by presenting the AI with 
a series of sensory images (programmatically manipulating the AI's microenvironment) and 
prompting the AI's perceptual processes to generalize them, but this severs the task of concept 
formation from its ecological validity (metaphorically speaking).  Knowledge goals (discussed in later 
sections) are not arbitrary; they derive from real-world goals or higher-level knowledge 
goals.  Knowledge goals exist in a holonic goal ecology; the goal ecology shapes our knowledge goals 
and thereby often shapes the knowledge itself.  

A first approximation to ecological validity is presenting the AI with a "challenge" in one of the 
virtual microenvironments previously advocated - for example, the billiards 
microenvironment.  Henceforth, I will shorten "microenvironmental challenge" to 
"microtask".  Microtasks can tutor concepts by presenting the AI with a challenge that must be 
solved using the concept the programmer wishes to tutor.  For scrupulous ecological validity the key 
concept should be part of a larger problem, but even playing "one of these things is not like the 
others" would still be better than manipulating the AI's perceptual processes directly.  

Tutoring a concept as the key to a microtask ensures that the concept's basic "shape", and associated 
experiences, are those required to solve problems, and that the AI has an experience of the concept 
being necessary, the experience of discovering the concept, and the experience of using the concept 
successfully.  Effective intelligence is produced not by having concepts but by using concepts; one 
learns to use concepts by using them.  The AI needs to possess the experiences of discovering and 
using the concept, just as the AI needs to possess the actual experiential referents that the concept 
generalizes; the AI needs experience of the contexts in which the concept is useful.  

Forming a complex concept requires an incremental path to that complex concept - a series of 
building-block concepts and precursor concepts so that the final step is a leap of manageable 
size.  Under the microtask developmental model, this would be implemented by a series of 
microtasks of ascending difficulty and complexity, in order to coax the AI into forming the 
precursor concepts leading up to the formation of complex concepts and abstract concepts.  This is 
a major expense in programmer effort, but I would argue that it is a necessary expense for the 
creation of rich concepts with goal-oriented experiential bases.  

The experiential path to "fiveness" would culminate with a microtask that could only be solved by 
abstracting and using the fiveness concept, and would lead up to that challenge through microtasks 
that could only be solved by abstracting and using concepts such as "object continuity", "unique 
correspondence", "mapping", "dangling group members", and the penultimate concept of "one-to-
one mapping".  

With respect to the specific microtask protocol for presenting a "challenge" to the AI, there are 
many possible strategies.  Personally, I visualize a simple microtask protocol (on the level of "one of 
these things is not like the others") as consisting of a number of "gates", each of which must be 
"passed" by taking one of a set of possible actions, depending on what the AI believes to be the rule 
indicating the correct action.  Passing ten successive gates on the first try is the indicator of 



 

success.  (For a binary choice, the chance of this happening accidentally is 1024:1.  If the AI thinks 
fast enough that this may happen randomly (which seems rather unlikely), the number of successive 
gates required can be raised to twenty or higher.)  This way, the AI can succeed or fail on individual 
gates, gathering data about individual examples of the common rule, but will not be able to win 
through the entire microtask until the common rule is successfully formulated.  This requires a 
microenvironment programmed to provide an infinite (or merely "relatively large") number of 
variations on the underlying challenge - enough variations to prevent the AI from solving the 
problem through simple memory.  

The sensory appearance of a microtask would vary depending on the modality.  For a Newtonian 
billiards modality, an individual "gate" (subtask) might consist of four "option systems", each option 
system grouped into an "option" and a "button".  Spatial separations in the Newtonian modality 
would be used to signal grouping; the distance between option systems would be large relative to the 
distance within option systems, and the distance between an option and a button would be large 
relative to the distance between subelements of an option.  Each option would have a different 
configuration; the AI would choose one of the four options based on its current hypothesis about 
the governing rule.  For example, the AI might select an option that consists of four billiards, or an 
option with two large billiards and one small billiard, or an option with moving billiards.  Having chosen 
an option, the AI would manipulate a motor effector billiard - the AI's embodiment in that 
environment - into contact with the button belonging to (grouped with) the selected option.  The AI 
would then receive a signal - perhaps a movement on the part of some billiard acting as a "flag" - 
which symbolized success or failure.  The environment would then shift to the next "gate", causing a 
corresponding shift in the sensory input to the AI's billiards modality.  

(Since the format of the microtask is complex and requires the AI to start out with an understanding 
of notions like "button" or "the button which belongs to the chosen option", there is an obvious 
chicken-and-egg problem with teaching the AI the format of the microtask before microtasks can be 
used to tutor other concepts.  For the moment we will assume the bootstrapping of a small concept 
base, perhaps by "cheating" and using programmer-created cognitive content as temporary 
scaffolding.)  

Given this challenge format, a simple microtask for "fiveness" seems straightforward:  The option 
containing five billiards, regardless of their size or relative positions or movement patterns, is the key 
to the gate.  In practice, setting up the fiveness microtask may prove more difficult because of the 
need to eliminate various false ways of arriving at a solution.  In particular, if the AI has a sufficiently 
wide variety of quantitative feature detectors, then the AI will almost certainly possess an emergent 
Accumulator Model (see [Meck83]) of numeracy.  If the AI takes a relatively fixed amount of time to 
mentally process each object, then single-feature clustering on the subjectively perceived time to 
mentally process a group could yield the microtask solution without a complex concept of 
fiveness.  Rather than fiveness, the AI would have formed the concept "things-it-takes-about-20-
milliseconds-to-understand".  The real-world analogue of this situation has already occurred when 
an experiment formerly thought to show evidence for infant numeracy on small visual sets was 
demonstrated to show sensitivity to the contour length (perimeter) of the visual set, but not to the 
cardinality of the visual set [Clearfield99].  Even with all precursor concepts already present, a 
complex microtask might be necessary to make fiveness the simplest correct answer.  



 

Also, the microtasks for the earlier concepts leading up to fiveness might inherently require greater 
complexity than the "option set" protocol described above.  The concept of unique correspondence 
derives its behavior from physical properties.  Choosing the right option set is a perceptual decision 
task rather than a physical manipulation task; in a decision microtask, the only manipulative subtask is 
maneuvering an effector billiard to touch a selected button.  Concepts such as "dangling objects" or 
"one-to-one mapping" might require manipulation subtasks rather than decision subtasks, in order 
to incorporate feedback about physical (microenvironmental) outcomes into the concept.  

For example, the microtask for teaching "one-to-one mapping" might incorporate the microworlds 
equivalent of a peg-and-hole problem.  The microtask might be to divide up 9 "pegs" among 9 
"holes" - where the 9 "holes" are divided into three subgroups of 4, 3, and 2, and the AI must 
allocate the peg supply among these subgroups in advance.  For example, in the first stage of the 
microtask, the AI might be permitted to move pegs between three "rooms", but not permitted to 
place pegs in holes.  In the second stage of the microtask the AI would attempt to place pegs in 
holes, and would then succeed or fail depending on whether the initial allocation between rooms 
was correct.  Because of the complexity of this microtask, it might require other microtasks simply 
to explain the problem format - to teach the AI about pegs and holes and rooms.  ("Pegs and holes" 
are universal and translate easily to a billiards modality; "holes", for example, might be immobile 
billiards, and "pegs" moveable billiards to be placed in contact with the "holes".)  

Placing virtual pegs in virtual holes is admittedly not an inherently impressive result.  In this case the 
AI is being taught to solve a simple problem so that the learned complexity will carry over into 
solving complex problems.  If the learned complexity does carry over, and the AI later goes on to 
solve more difficult challenges, then, in retrospect, getting the AI to think coherently enough to 
navigate a microtask will "have been" an impressive result.  

2.5.6: Interactions on the concept level 

Concept-concept interactions are more readily accessible to introspection and to experimental 
techniques, and are relatively well-known in AI and in cognitive psychology.  To summarize some of 
the complexity bound up in concept-concept interactions:  

• Concepts are associated with other concepts.  Activating a concept can "prime" a nearby 
concept, where "priming" is usually experimentally measured in terms of decreased reaction 
times [Meyer71].  This suggests that more computational resources should be devoted to 
scanning for primed concepts, or that primed concepts should be scanned first.  (This 
viewpoint is too mechanomorphic to be considered as an explanation of priming in 
humans.  Preactivation or advance binding of a neural network would be more realistic.)  

• Nearby concepts may sometimes "slip" under cognitive pressures; for example, "triangle" to 
"pyramid".  Such slippages play a major role in analogies under the Copycat system 
[Mitchell93].  Slippages occurring in complex design and planning problems probably 
incorporate context sensitivity and even goal orientation; see the later discussion of conflict 
and resonance in mental imagery.  

• Concepts, in their role as categories, share territory.  An individual sparrow, as an object, is 
described by the concepts "sparrow" and "bird".  All objects that can be described as 
"sparrow" will also be described by "bird".  Thus, information arriving through "bird" will 
usually, though not always, affect the entire territory of "sparrow".  This form of inheritance 



 

can take place without an explicit "is-a" rule connecting "sparrow" to "bird"; it is enough 
that "bird" happens to describe all referents of "sparrow".  

• Concepts, in their role as categories, have supercategory and subcategory 
relationships.  Declarative beliefs targeted on concepts can sometimes be inherited through 
such links.  For example, "At least one X is an A" is inherited by the supercategory Y of 
X:  If all referents of X are referents of Y, then "At least one referent of X is an A" implies 
that "At least one referent of Y is an A".  Conversely, rules such as "All X are A" are 
inherited by subcategories of X but not supercategories of X.  Inheritance that occurs on the 
concept level, through an "is-a" rule, should be distinguished from pseudo-inheritance that 
occurs through shared territory in specific mental imagery.  Mental quantifiers such as "all X 
are Y" usually translate to "most X are Y" or "X, by default, are Y"; all beliefs are subject to 
controlled exception.  It is possible to reason about category hierarchies deliberatively rather 
than perceptually, but our speed in doing so suggests a perceptual shortcut.  

• Concepts possess transformation relations, which are again illustrated in Copycat.  For 
example, in Copycat, "a" is the "predecessor" of "b", and "1" is the "predecessor" of "2".  In 
a general intelligence these concept-concept relations would refer to, and would be 
generalized from, observation of transformational processes acting on experiential referents 
which causes the same continuous object to move from one category to another.  Often 
categories related by transformational processes are subcategories of the same supercategory.  

• Concepts act as verbs, adjectives, and adverbs as well as nouns.  In humans, concepts act as 
one-place, two-place, and three-place predicates, as illustrated by the "subject", "direct 
object", and "indirect object" in the human parts of speech; "X gives Y to Z".  For humans, 
four-place and higher predicates are probably represented through procedural rules rather 
than perceptually; spontaneously noticing a four-place predicate could be very 
computationally expensive.  Discovering a predicate relation is assisted by categorizing the 
predicate's subjects, factoring out the complexity not germane to the predicate.  

• Concepts, in their role as symbols with auditory, visual, or gestural tags, play a fundamental 
role in both human communication and internal human conceptualization.  The short, 
snappy auditory tag "five" can stand in for the complexity bound up in the fiveness 
concept.  Two humans that share a common lexical base can communicate a complex 
mental image by interpreting the image using concepts, describing the image with a concept 
structure, translating the concepts within the structure into socially shared auditory tags, 
transforming the concept structure into a linear sequence using shared syntax, and emitting 
the auditory tags in that linear sequence.  (To translate the previous sentence into 
English:  We communicate with sentences that use words and syntax from a shared 
language.)  The same base of complexity is apparently also used to summarize and compactly 
manipulate thoughts internally; see the next section.  

I also recommend George Lakoff's Women, Fire, and Dangerous Things: What Categories Reveal about the 
Mind [Lakoff87] for descriptions of many concept-level phenomena.  

2.6: The thought level 

Concepts are combinatorial learned complexity.  Concepts represent regularities that recur, not in 
isolation, but in combination and interaction with other such regularities.  Regularities are not 
isolated and independent, but are similar to other regularities, and there are simpler regularities and 
more complex regularities, forming a metaphorical "ecology" of regularities.  This essential fact 



 

about the structure of our low-entropy universe is what makes intelligence possible, computationally 
tractable, evolvable within a genotype, and learnable within a phenotype.  

The thought level lies above the learned complexity of the concept level.  Thoughts are structures of 
combinatorial concepts that alter imagery within the workspace of sensory modalities.  Thoughts are 
the disposable one-time structures implementing a non-recurrent mind in a non-recurrent 
world.  Modalities are wired; concepts are learned; thoughts are invented.  

Where concepts are building blocks, thoughts are immediate.  Sometimes the distance between a 
concept and a thought is very short; bird is a concept, but with little effort it can become a thought 
that retrieves a bird exemplar as specific mental imagery.  Nonetheless, there is still a conceptual 
difference between a brick and a house that happens to be built from one brick.  Concepts, 
considered as concepts, are building blocks with ready-to-use concept kernels.  A thought fills in all 
the blanks and translates combinatorial concepts into specific mental imagery, even if the thought is 
built from a single concept.  Concepts reside in long-term storage; thoughts affect specific imagery.  

The spectra for "learned vs. invented", "combinatorial vs. specific", "stored vs. instantiated", and 
"recurrent vs. nonrecurrent" are conceptually separate, although deeply interrelated and usually 
correlated.  Some cognitive content straddles the concept and thought levels.  "Beliefs" (declarative 
knowledge) are learned, specific, stored, and recurrent.  An episodic memory in storage is learned, 
specific, stored, and nonrecurrent.  Even finer gradations are possible:  A retrieved episodic memory 
is learned, specific, and immediate; the memory may recur as mental content, but its external 
referent is nonrecurrent.  Similarly, a concept which refers to a specific external object is learned, 
specific, stored, and "semi-recurrent" in the sense that it may apply to more than one sensory image, 
since the object may be encountered more than once, but still referring to only one object and not a 
general category.  
   

  Modalities: Concepts: Thoughts: 

Source:  Wired Learned Invented 

Degrees of freedom:  Representing Combinatorial Specific 

Cognitive immediacy:  (Not applicable.) Stored Instantiated 

Regularity:  Invariant Recurrent Nonrecurrent 

Amount of complexity:  Bounded Open-ended Open-ended 

2.6.1: Thoughts and language 

The archetypal examples of "thoughts" (invented, specific, instantiated, nonrecurrent) are the 
sentences mentally "spoken" and mentally "heard" within the human stream of consciousness.  We 
use the same kind of sentences, spoken aloud, to communicate thoughts between humans.  

Words are the phonemic tags (speech), visual tags (writing), gestural tags (sign language), or haptic 
tags (Braile) used to invoke concepts.  Henceforth, I will use speech to stand for all language 



 

modalities; "auditory tag" or "phonemic tag" should be understood as standing for a tag in any 
modality.  

When roughly the same concept shares roughly the same phonemic tag within a group of humans, 
words can be used to communicate concepts between humans, and sentences can be used to 
communicate complex imagery.  The phonemes of a word can evoke all the functionality of the real 
concept associated with the auditory tag.  A spoken sentence is a linear sequence of words; the 
human brain uses grammatical and syntactical rules to assemble the linear sequence into a structure 
of concepts, complete with internal and external targeting information.  "Triangular lightbulb", an 
adjective followed by a noun, becomes "triangular" targeting "light bulb".  "That is a telephone", 
anaphor-verb-article-noun, becomes a statement about the telephone-ness of a previously referred-
to object.  "That" is a backreference to a previously invoked mental target, so the accompanying 
cognitive description ("is a telephone") is imposed on the cognitive imagery representing the 
referent of "that".  

The cognitive process that builds a concept structure from a word sequence combines syntactic 
constraints and semantic constraints; pure syntax is faster and races ahead of semantics, but 
semantic disharmonies can break up syntactically produced cognitive structures.  Semantic guides to 
interpretation also reach to the word level, affecting the interpretation of homophones and 
ambiguous phonemes.  

For the moment I will leave open the question of why we hear "mental sentences" internally - that is, 
the reason why the transformation of concept structures into linear word sequences, obviously 
necessary for spoken communication, also occurs internally within the stream of consciousness.  I 
later attempt to explain this as arising from the coevolution of thoughts and language.  For the 
moment, let it stand that the combinatorial structure of words and sentences in our internal narrative 
reflects the combinatorial structure of concepts and thoughts.  

2.6.2: Mental imagery 

The complexity of the thought level of organization arises from the cyclic interaction of thoughts 
and mental imagery.  Thoughts modify mental imagery, and in turn, mental imagery gives rise to 
thoughts.  

Mental imagery exists within the representational workspace of sensory modalities.  Sensory imagery 
arises from environmental information (whether the environment is "real" or "virtual"); imaginative 
imagery arises from the manipulation of modality workspace through concept imposition and 
memory retrieval.  

Mental imagery, whether sensory or imaginative, exhibits holonic organization: from the "pixel" level 
into objects and chunks; from objects and chunks into groups and superobjects; from groups and 
superobjects into mental scenes.  In human vision, examples of specific principles governing 
grouping are proximity, similarity of color, similarity of size, common fate, and closure 
[Wertheimer23]; continuation [Moore98]; common region and connectedness [Palmer94]; and 
collinearity [Lavie96].  Some of the paradigms that have been proposed for resolving the positive 
inputs from grouping principles, and the negative inputs from detected conflicts, into a consistent 
global organization, include:  Holonic conflict resolution (described earlier), computational 



 

temperature [Mitchell93], Prägnanz [Koffka35], Hopfield networks [Hopfield85], the likelihood 
principle [Helmholtz67]; [Lowe85], minimum description length [Hochberg57], and constraint 
propagation [Kumar92].  

Mental imagery provides a workspace for specific perceptions of concepts and concept 
structures.  A chunk of sensory imagery may be mentally labeled with the concept structure "yellow 
box", and that description will remain bound to the object - a part of the perception of the object - 
even beyond the scope of the immediate thought.  Learned categories and learned expectations also 
affect the gestalt organization of mental imagery [Zemel02].  

Mental imagery is the active canvas on which deliberative thought is painted - "active canvas" 
implying a dynamic process and not just a static representation.  The gestalt of mental imagery is the 
product of many local relations between elements.  Because automatic cognitive processes maintain 
the gestalt, a local change in imagery can have consequences for connected elements in working 
imagery, without those changes needing to be specified within the proximate thought that caused 
the modification.  The gestalt coherence of imagery also provides feedback on which possible 
changes will cohere well, and is therefore one of the verifying factors affecting which potential 
thoughts rise to the status of actuality (see below).  

Imagery supports abstract percepts.  It is possible for a human to reason about an object which is 
known to cost $1000, but for which no other mental information is available.  Abstract reasoning 
about this object requires a means of representing mental objects that occupy no a priori modality; 
however, this does not mean that abstract reasoning operates independently of all 
modalities.  Abstract reasoning might operate through a modality-level "object tracker" which can 
operate independently of the modalities it tracks; or by borrowing an existing modality using 
metaphor (see below); or the first option could be used routinely, and the second option when 
necessary.  Given an abstract "object which costs $1000", it is then possible to attach concept 
structures that describe the object without having any specific sensory imagery to describe.  If I 
impose the concept "red" on the existing abstract imagery for "an object which costs $1000", to 
yield "a red object which costs $1000", the "red" concept hangs there, ready to activate when it can, 
but not yielding specific visual imagery as yet.  

Similarly, knowledge generalized from experience with concept-concept relations can be used to 
detect abstract conflicts.  If I know that all penguins are green, I can deduce that "a red object which 
costs $1000" is not a penguin.  It is possible to detect the conflict between "red" and "green" by a 
concept-level comparison of the two abstract descriptions, even in the absence of visualized mental 
imagery.  However, this does not mean that it is possible for AI development to implement only 
"abstract reasoning" and leave out the sensory modalities.  First, a real mind uses the rich concept-
level complexity acquired from sensory experience, and from experience with reasoning that uses 
fully visualized imaginative imagery, to support abstract reasoning; we know that "red" conflicts with 
"green" because of prior sensory experience with red and green.  Second, merely because some steps 
in reasoning appear as if they could theoretically be carried out purely on the concept level does not 
mean that a complete deliberative process can be carried out purely on the concept level.  Third, 
abstract reasoning often employs metaphor to contribute modality behaviors to an abstract 
reasoning process.  



 

The idea of "pure" abstract reasoning has historically given rise to AI pathologies and should be 
considered harmful.  With that caution in mind, it is nonetheless possible that human minds 
visualize concepts only to the extent required by the current train of thought, thus conserving 
mental resources.  An early-stage AI is likely to be less adept at this trick, meaning that early AIs may 
need to use full visualizations where a human could use abstract reasoning.  

Abstract reasoning is a means by which inductively acquired generalizations can be used in deductive 
reasoning.  If empirical induction from an experiential base in which all observed penguins are green 
leads to the formation of the belief "penguins are green", then this belief may apply abstractly to "a 
red object which costs $1000" to conclude that this object is probably not a penguin.  In this 
example, an abstract belief is combined with abstract imagery about a specific object to lead to a 
further abstract conclusion about that specific object.  Humans go beyond this, employing the very 
powerful technique of "deductive reasoning".  We use abstract beliefs to reason about abstract 
mental imagery that describes classes and not just specific objects, and arrive at conclusions which 
then become new abstract beliefs; we can use deductive reasoning, as well as inductive reasoning, to 
acquire new beliefs.  "Pure" deductive reasoning, like "pure" abstract reasoning, should be 
considered harmful; deductive reasoning is usually grounded in our ability to visualize specific test 
cases and by the intersection of inductive confirmation with the deductive conclusions.  

Imagery supports tracking of reliances, a cognitive function which is conceptually separate from the 
perception of event causation.  Another way of thinking about this is that perceived cognitive 
causation should not be confused with perceived causation in real-world referents.  I may believe 
that the sun will rise soon; the cause of this belief may be that I heard a rooster crow; I may know 
that my confidence in sunrise's nearness relies on my confidence in the rooster's accuracy; but I do 
not believe that the rooster crowing causes the sun to rise.  

Imagery supports complex percepts for "confidence" by tracking reliances on uncertainty 
sources.  Given an assertion A with 50% confidence that "object X is blue", and a belief B with 50% 
confidence that "blue objects are large", the classical deduction would be the assertion "object X is 
large" with 25% confidence.  However, this simple arithmetical method omits the possibility, 
important even under classical logic, that A and B are both mutually dependent on a third 
uncertainty C - in which case the combined confidence is greater than 25%.  For example, in the 
case where "object X is blue" and "blue objects are large" are both straightforward deductions from 
a third assertion C with 50% confidence, and neither A nor B have any inherent uncertainty of their 
own, then "object X is large" is also a straightforward deduction from C, and has confidence 50% 
rather than 25%.  

Confidence should not be thought of as a single quantitative probability; confidence is a percept that 
sums up a network of reliances on uncertainty sources.  Straightforward links - that is, links whose 
local uncertainty is so low as to be unsalient - may be eliminated from the perceived reliances of 
forward deductions: "object X is large" is seen as a deduction from assertion C, not a deduction 
from C plus "object X is blue" plus "blue objects are large".  If, however, the assertion "object X is 
blue" is contradicted by independent evidence supporting the inconsistent assertion "object X is 
red", then the reliance on "object X is blue" is an independent source of uncertainty, over and above 
the derived reliance on C.  That is, the confidence of an assertion may be evaluated by weighing it 
against the support for the negation of the assertion [Tversky94].  Although the global structure of 
reliances is that of a network, the local percept of confidence is more likely derived from a set of 



 

reliances on supporting and contradicting assertions whose uncertainty is salient.  That the local 
percept of confidence is a set, and not a bag or a directed network, accounts for the elimination of 
common reliances in further derived propositions and the preservation of the global network 
structure.  In humans, the percept of confidence happens to exhibit a roughly quantitative strength, 
and this quantity behaves in some ways like the mathematical formalism we call "probability".  

Confidence and probability are not identical; for humans, this is both an advantage and a 
disadvantage.  Seeing an assertion relying on four independent assertions of 80% confidence as 
psychologically different from an assertion relying on a single assertion of 40% confidence may 
contribute to useful intelligence.  On the other hand, the human inability to use an arithmetically 
precise handling of probabilities may contribute to known cases of non-normative reasoning, such 
as not taking into account Bayesian priors, overestimating conjunctive probabilities and 
underestimating disjunctive probabilities, and the other classical errors described in [Tversky74].  See 
however [Cosmides96] for some cautions against underestimating the ecological validity of human 
reasoning; an AI might best begin with separate percepts for "humanlike" confidence and 
"arithmetical" confidence.  

Imagery interacts with sensory information about its referent.  Expectational imagery is confirmed 
or violated by the actual event.  Abstract imagery created and left hanging binds to the sensory 
percept of its referent when and if a sensory percept becomes available.  Imagery interacts with 
Bayesian information about its referent: assertions that make predictions about future sensory 
information are confirmed or disconfirmed when sensory information arrives to satisfy or contradict 
the prediction.  Confirmation or disconfirmation of a belief may backpropagate to act as Bayesian 
confirmation or disconfirmation on its sources of support.  (Normative reasoning in these cases is 
generally said to be governed by the Bayesian Probability Theorem.)  The ability of imagery to bind 
to its referent is determined by the "matching" ability of the imagery - its ability to distinguish a 
sensory percept as belonging to itself - which in turn is a property of the way that abstract imagery 
interacts with incoming sensory imagery on the active canvas of working memory.  A classical AI 
with a symbol for "hamburger" may be able to distinguish correctly spelled keystrokes typing out 
"hamburger", but lacks the matching ability to bind to hamburgers in any other way, such as visually 
or olfactorily.  In humans, the abstract imagery for "a red object" may not involve a specific red 
image, but the "red" concept is still bound to the abstract imagery, and the abstract imagery can use 
the "red" kernel to match a referent in sensory imagery.  

Imagery may bind to its referent in different ways.  A mental image may be an immediate, 
environmental sensory experience; it may be a recalled memory; it may be a prediction of future 
events; it may refer to the world's present or past; it may be a subjunctive or counterfactual 
scenario.  We can fork off a subjunctive scenario from a descriptive scene by thinking "What if?" 
and extrapolating, and we can fork off a separate subjunctive scenario from the first by thinking 
"What if?" again.  Humans cannot continue the process indefinitely, because we run out of short-
term memory to track all the reliances, but we have the native tracking ability.  Note that mental 
imagery does not have an opaque tag selected from the finite set "subjunctive", "counterfactual", 
and so on.  This would constitute code abuse: directly programming, as a special case, that which 
should result from general behaviors or emerge from a lower level of organization.  An assertion 
within counterfactual imagery is not necessarily marked with the special tag "counterfactual"; rather, 
"counterfactual" may be the name we give to a set of internally consistent assertions with a common 
dependency on an assertion that is strongly disconfirmed.  Similarly, a prediction is not necessarily 



 

an assertion tagged with the opaque marker "prediction"; a prediction is better regarded as an 
assertion with deductive support whose referent is a future event or other referent for which no 
sensory information has yet arrived; the prediction imagery then binds to sensory information when 
it arrives, permitting the detection of confirmation or disconfirmation.  The distinction between 
"prediction", "counterfactual", and "subjunctive scenario" can arise out of more general behaviors 
for confidence, reliance, and reference.  

Mental imagery supports the perception of similarity and other comparative relations, organized into 
complex mappings, correspondences, and analogies (with Copycat being the best existing example 
of an AI implementation; see [Mitchell93]).  Mental imagery supports expectations and the detection 
of violated expectations (where "prediction", above, refers to a product of deliberation, 
"expectations" are created by concept applications, modality behaviors, or gestalt 
interactions).  Mental imagery supports temporal imagery and the active imagination of temporal 
processes.  Mental imagery supports the description of causal relations between events and between 
assertions, forming complex causal networks which distinguish between implication and direct 
causation [Pearl00].  Mental imagery supports the binding relation of "metaphor" to allow extended 
reasoning by analogy, so that, e.g., the visuospatial percept of a forking path can be used to represent 
and reason about the behavior of if-then-else branches, with conclusions drawn from the metaphor 
(tentatively) applied to the referent [Lakoff99].  Imagery supports annotation of arbitrary objects 
with arbitrary percepts; if I wish to mentally label my watch as "X", then "X" it shall be, and if I also 
label my headphones and remote control as "X", then "X" will form a new (though arbitrary) 
category.  

2.6.3: The origin of thoughts 

Thoughts are the cognitive events that change mental imagery.  In turn, thoughts are created by 
processes that relate to mental imagery, so that deliberation is implemented by the cyclic interaction 
of thoughts modifying mental imagery which gives rise to further thoughts.  This does not mean that 
the deliberation level is "naturally emergent" from thought.  The thought level has specific features 
allowing thought in paragraphs and not just sentences - "trains of thought" with internal momentum, 
although not so much momentum that interruption is impossible.  

At any one moment, out of the vast space of possible thoughts, a single thought ends up being 
"spoken" within deliberation.  Actually, "one thought at a time" is just the human way of doing 
things, and a sufficiently advanced AI might multiplex or multithread deliberation, but this doesn't 
change the basic question:  Where do thoughts come from?  I suggest that it is best to split our 
conceptual view of this process into two parts; first, the production of suggested thoughts, and 
second, the selection of thoughts that appear "useful" or "possibly useful" or "important" or 
otherwise interesting.  In some cases, the process that invents or suggests thoughts may do most of 
the work, with winnowing relatively unimportant; when you accidentally rest your hand on a hot 
stove, the resulting bottom-up event immediately hijacks deliberation.  In other cases, the selection 
process may comprise most of the useful intelligence, with a large number of possible thoughts 
being tested in parallel.  In addition to being conceptually useful, distinguishing between suggestion 
and verification is useful on a design level if "verifiers" and "suggesters" can take advantage of 
modular organization.  Multiple suggesters can be judged by one verifier and multiple verifiers can 
summate the goodness of a suggestion.  This does not necessarily imply hard-bounded processing 



 

stages in which "suggestion" runs, terminates and is strictly followed by "verification", but it implies 
a common ground in which repertoires of suggestion processes and verification processes interact.  

I use the term sequitur to refer to a cognitive process which suggests thoughts.  "Sequitur" refers, not 
to the way that two thoughts follow each other - that is the realm of deliberation - but rather to the 
source from which a single thought arises, following from mental imagery.  Even before a suggested 
thought rises to the surface, the suggestion may interact with mental imagery to determine whether 
the thought is interesting and possibly to influence the thought's final form.  I refer to specific 
interactions as resonances; a suggested thought resonates with mental imagery during 
verification.  Both positive resonances and negative resonances (conflicts) can make a thought more 
interesting, but a thought with no resonances at all is unlikely to be interesting.  

An example of a sequitur might be noticing that a piece of mental imagery satisfies a concept; for a 
human, this would translate to the thought "X is a Y!"  In this example, the concept is cued and 
satisfied by a continuous background process, rather than being suggested by top-down deliberation; 
thus, noticing that X is a Y comes as a surprise which may shift the current train of thought.  How 
much of a surprise - how salient the discovery becomes - will depend on an array of surrounding 
factors, most of which are probably the same resonances that promoted the candidate suggestion 
"concept Y matches X" to the real thought "X is a Y!".  (The difference between the suggestion and 
the thought is that the real thought persistently changes current mental imagery by binding the Y 
concept to X, and shifts the focus of attention.)  

What are the factors that determine the resonance of the suggestion "concept Y matches X" or 
"concept Y may match X" and the salience of the thought "X is a Y"?  Some of these factors will be 
inherent properties of the concept Y, such as Y's past value, the rarity of Y, the complexity of Y, et 
cetera; in AI, these are already-known methods for ranking the relative value of heuristics and the 
relative salience of categories.  Other factors are inherent in X, such as the degree to which X is the 
focus of attention.  

Trickier factors emerge from the interaction of X (the targeted imagery), Y (the stored concept that 
potentially matches X), the suggested mental imagery for Y describing X, the surrounding imagery, 
and the task context.  A human programmer examining this design problem naturally sees an 
unlimited range of potential correlations.  To avoid panic, it should be remembered that evolution 
did not begin by contemplating the entire search space and attempting to constrain it; evolution 
would have incrementally developed a repertoire of correlations in which adequate thoughts 
resonated some of the time.  Just as concept kernels are not AI-complete, sequiturs and resonances 
are not AI-complete.  Sequiturs and resonances also may not need to be human-equivalent to 
minimally support deliberation; it is acceptable for an early AI to miss out on many humanly 
obvious thoughts, so long as those thoughts which are successfully generated sum to fully general 
deliberation.  

Specific sequiturs and resonances often seem reminiscent of general heuristics in Lenat's EURISKO 
[Lenat83] or other AI programs intended to search for interesting concepts and conjectures 
[Colton00].  The resemblance is further heightened by the idea of adding learned associations to the 
mix; for example, correlating which concepts Y are frequently useful when dealing with imagery 
described by concepts X, or correlating concepts found useful against categorizations of the current 
task domain, bears some resemblance to EURISKO trying to learn specific heuristics about when 



 

specific concepts are useful.  Similarly, the general sequitur that searches among associated concepts 
to match them against working imagery bears some resemblance to EURISKO applying a 
heuristic.  Despite the structural resemblance, sequiturs are not heuristics.  Sequiturs are general 
cognitive subprocesses lying on the brainware level of organization.  The subprocess is the sequitur 
that handles thoughts of the general form "X is a Y"; any cognitive content relating to specific Xs 
and Ys is learned complexity, whether it takes the form of heuristic beliefs or correlative 
associations.  Since our internal narrative is open to introspection, it is not surprising if sequiturs 
produce some thoughts resembling the application of heuristics; the mental sentences produced by 
sequiturs are open to introspection, and AI researchers were looking at these mental sentences when 
heuristics were invented.  

Some thoughts that might follow from "X is a Y!" (unexpected concept satisfaction) are: "Why is X 
a Y?" (searching for explanation); or "Z means X can't be a Y!" (detection of belief violation); or "X 
is not a Y" (rechecking of a tentative conclusion).  Any sequence of two or more thoughts is 
technically the realm of deliberation, but connected deliberation is supported by properties of the 
thought level such as focus of attention.  The reason that "Why is X a Y?" is likely to follow from 
"X is a Y!" is that the thought "X is a Y" shifts the focus of attention to the Y-ness of X (the mental 
imagery for the Y concept binding to X), so that sequitur processes tend to focus selectively on this 
piece of mental imagery and try to discover thoughts that involve it.  

The interplay of thoughts and imagery has further properties that support deliberation.  "Why is X a 
Y?" is a thought that creates, or focuses attention on, a question - a thought magnet that attracts 
possible answers. Question imagery is both like and unlike goal imagery.  (More about goals later; 
currently what matters is how the thought level interacts with goals, and the intuitive definition of 
goals should suffice for that.)  A goal in the classic sense might be defined as abstract imagery that 
"wants to be true", which affects cognition by affecting the AI's decisions and actions; the AI makes 
decisions and takes actions based on whether the AI predicts those decisions and actions will lead to 
the goal referent. Questions primarily affect which thoughts arise, rather than which decisions are 
made.  Questions are thought-level complexity, a property of mental imagery, and should not be 
confused with reflective goals asserting that a piece of knowledge is desirable; the two interrelate very 
strongly but are conceptually distinct.  A question is a thought magnet and a goal is an action 
magnet.  Since stray thoughts are (hopefully!) less dangerous than stray actions, question-ness (inquiry) 
can spread in much more unstructured ways than goal-ness (desirability).  

Goal imagery is abstract imagery whose referent is brought into correspondence with the goal 
description by the AI's actions.  Question imagery is also abstract imagery, since the answer is not 
yet known, but question imagery has a more open-ended satisfaction criterion.  Goal imagery tends 
to want its referent to take on a specific value; question imagery tends to want its referent to take on 
any value.  Question imagery for "the outcome of event E" attracts any thoughts about the outcome 
of event E; it is the agnostic question "What, if anything, is the predicted outcome of E?"  Goal 
imagery for "the outcome of event E" tends to require some specific outcome for E.  

The creation of question imagery is one of the major contributing factors to the continuity of 
thought sequences, and therefore necessary for deliberation.  However, just as goal imagery must 
affect actual decisions and actual actions before we concede that the AI has something which 
deserves to be called a "goal", question imagery must affect actual thoughts - actual sequiturs and 
actual verifiers - to be considered a cognitively real question.  If there is salient question imagery for 



 

"the outcome of event E", it becomes the target of sequiturs that search for beliefs about 
implication or causation whose antecedents are satisfied by aspects of E; in other words, sequiturs 
searching for beliefs of the form "E usually leads to F" or "E causes F".  If there is open question 
imagery for "the cause of the Y-ness of X", and a thought suggested for some other reason happens 
to intersect with "the cause of the Y-ness of X", the thought resonates strongly and will rise to the 
surface of cognition.  

A similar and especially famous sequitur is the search for a causal belief whose consequent matches 
goal imagery, and whose antecedent is then visualized as imagery describing an event which is 
predicted to lead to the goal.  The event imagery created may become new goal imagery - a subgoal - 
if the predictive link is confirmed and no obnoxious side effects are separately predicted (see the 
discussion of the deliberation level for more about goals and subgoals).  Many classical theories of 
AI, in particular "theorem proving" and "planning" [Newell63], hold up a simplified form of the 
"subgoal seeker" sequitur as the core algorithm of human thought.  However, this sequitur does not 
in itself implement planning.  The process of seeking subgoals is more than the one cognitive 
process of searching for belief consequents that match existing goals.  There are other roads to 
finding subgoal candidates aside from backward chaining on existing goals; for example, forward 
reasoning from available actions.  There may be several different real sequiturs (cognitive processes) 
that search for relevant beliefs; evolution's design approach would have been "find cognitive 
processes that make useful suggestions", not "constrain an exhaustive search through all beliefs to 
make it computationally efficient", and this means there may be several sequiturs in the repertoire 
that selectively search on different kinds of causal beliefs.  Finding a belief whose consequent 
matches goal imagery is not the same as finding an event which is predicted to lead to the goal event; 
and even finding an action predicted to lead to at least one goal event is not the same as verifying 
the net desirability of that action.  

The sequitur that seeks beliefs whose consequents match goal imagery is only one component of the 
thought level of organization.  But it is a component that looks like the "exclamation mark of 
thought" from the perspective of many traditional theories, so it is worthwhile to review how the 
other levels of organization contribute to the effective intelligence of the "subgoal seeker" sequitur.  

A goal is descriptive mental imagery, probably taking the form of a concept or concept structure 
describing an event; goal-oriented thinking uses the combinatorial regularities of the concept layer to 
describe regularities in the structure of goal-relevant events.  The search for a belief whose 
consequent matches a goal description is organized using the category structure of the concept layer; 
concepts match against concepts, rather than unparsed sensory imagery matching against unparsed 
sensory imagery.  Searching through beliefs is computationally tractable because of learned 
resonances and learned associations which are "learned complexity" in themselves, and moreover 
represent regularities in a conceptually described model rather than a raw sensory imagery.  Goal-
oriented thinking as used by humans is often abstract, which requires support from properties of 
mental imagery; it requires that the mind maintain descriptive imagery which is not fully visualized 
or completely satisfied by a sensory referent, but which binds to specific referents when these 
become available.  Sensory modalities provide a space in which all this imagery can exist and 
interprets the environment from which learned complexity is learned.  The feature structure of 
modalities renders learning computationally tractable.  Without feature structure, concepts are 
computationally intractable; without category structure, thoughts are computationally 
intractable.  Without modalities there are no experiences and no mental imagery; without learned 



 

complexity there are no concepts to structure experience and no beliefs generalized from 
experience.  In addition to supporting basic requirements, modalities contribute directly to 
intelligence in any case where referent behaviors coincide with modality behaviors, and indirectly in 
cases where there are valid metaphors between modality behaviors and referent behaviors.  

Even if inventing a new subgoal is the "exclamation mark of thought" from the perspective of many 
traditional theories, it is an exclamation mark at the end of a very long sentence.  The rise of a single 
thought is an event that occurs within a whole mind - an intact reasoning process with a past history.  

2.6.4: Beliefs 

Beliefs - declarative knowledge - straddle the division between the concept level and the thought 
level.  In terms of the level characteristics noted earlier, beliefs are learned, specific, stored, and 
recurrent.  From this perspective beliefs should be classified as learned complexity and therefore a 
part of the generalized concept level.  However, beliefs bear a greater surface resemblance to mental 
sentences than to individual words.  Their internal structure appears to resemble concept structures 
more than concepts; and beliefs possess characteristics, such as structured antecedents and 
consequents, which are difficult to describe except in the context of the thought level of 
organization.  I have thus chosen to discuss beliefs within the thought level30.  

Beliefs are acquired through cognitive processes that fall into two major classes, inductive and deductive, 
respectively referring to generalization over experience, and reasoning from previous beliefs.  The 
strongest beliefs have both inductive and deductive support: deductive conclusions with experiential 
confirmation, or inductive generalizations with causal explanations.  

Induction and deduction can intersect because both involve abstraction.  Inductive generalization 
produces a description containing categories that act as variables - abstract imagery that varies over 
the experiential base and describes it.  Abstract deduction takes several inductively or deductively 
acquired generalizations, and chains together their abstract antecedents and abstract consequents to 
produce an abstract conclusion, as illustrated in the earlier discussion of abstract mental 
imagery.  Even completely specific beliefs confirmed by a single experience, such as "New Year's 
Eve of Y2K took place on a Friday night", are still "abstract" in that they have a concept-based, 
category-structure description existing above the immediate sensory memory, and this conceptual 
description can be more easily chained with abstract beliefs that reference the same concepts.  

Beliefs can be suggested by generalization across an experiential base, and supported by 
generalization across an experiential base, but there are limits to how much support pure induction 
can generate (a common complaint of philosophers); there could always be a disconfirming instance 
you don't know about.  Inductive generalization probably resembles concept generalization, more or 
less; there is the process of initially noticing a regularity across an experiential base, the process of 
verifying it, and possibly even a process producing something akin to concept kernels for cueing 
frequently relevant beliefs.  Beliefs have a different structure than concepts; concepts are either useful 
or not useful, but beliefs are either true or false.  Concepts apply to referents, while beliefs describe 
relations between antecedents and consequents.  While this implies a different repertoire of 
generalizations that produce inductive beliefs, and a different verification procedure, the 
computational task of noticing a generalization across antecedents and consequents seems strongly 
reminiscent of generalizing a two-place predicate.  



 

Beliefs are well-known in traditional AI, and are often dangerously misused; while any process 
whatever can be described with beliefs, this does not mean that a cognitive process is implemented by 
beliefs.  I possess a visual modality that implements edge detection, and I possess beliefs about my 
visual modality, but the latter aspect of mind does not affect the former.  I could possess no beliefs 
about edge detection, or wildly wrong beliefs about edge detection, and my visual modality would 
continue working without a hiccup.  An AI may be able to introspect on lower levels of organization 
(see Part III), and an AI's cognitive subsystems may interact with an AI's beliefs more than the 
equivalent subsystems in humans (again, see Part III), but beliefs and brainware remain distinct - not 
only distinct, but occupying different levels of organization.  When we seek the functional 
consequences of beliefs - their material effects on the AI's intelligence - we should look for the 
effect on the AI's reasoning and its subsequent decisions and actions.  Anything can be described by 
a belief, including every event that happens within a mind, but not all events within a mind are 
implemented by the possession of a belief which describes the rules governing that event.  

In formal, classical terms, the cognitive effect of possessing a belief is sometimes defined to mean 
that when the antecedent of a belief is satisfied, its consequent is concluded.  I would regard this as 
one sequitur out of many, but it is nonetheless a good example of a sequitur - searching for beliefs 
whose antecedents are satisfied by current imagery, and concluding the consequent (with reliances 
on the belief itself and on the imagery matched by the antecedent).  However, this sequitur, if 
applied in the blind sense evoked by classical logic, will produce a multitude of useless conclusions; 
the sequitur needs to be considered in the context of verifiers such as "How rare is it for this belief 
to be found applicable?", "How often is this belief useful when it is applicable?", or "Does the 
consequent produced intersect with any other imagery, such as open question imagery?"  

Some other sequiturs involving beliefs:  Associating backward from question imagery to find a belief 
whose consequent touches the question imagery, and then seeing if the belief's antecedent can be 
satisfied by current imagery, or possibly turning the belief's antecedent into question 
imagery.  Finding a causal belief whose consequent corresponds to a goal; the antecedent may then 
become a subgoal.  Detecting a case where a belief is violated - this will usually be highly salient.  

Suppose an AI with a billiards modality has inductively formed the belief "all billiards which are 'red' 
are 'gigantic'".  Suppose further that 'red' and 'gigantic' are concepts formed by single-feature 
clustering, so that a clustered size range indicates 'gigantic', and a clustered volume of color space 
indicates 'red'.  If this belief is salient enough, relative to the current task, to be routinely checked 
against all mental imagery, then several cognitive properties should hold if AI really possesses a 
belief about the size of red billiards.  In subjunctive imagery, used to imagine non-sensory billiards, 
any billiard imagined to be red (within the clustered color volume of the 'red' concept) would need 
to be imagined as being gigantic (within the clustered size range of the 'gigantic' concept).  If the 
belief "all red billiards are gigantic" has salient uncertainty, then the conclusion of gigantism would 
have a reliance on this uncertainty source and would share the perceived doubt.  Given external 
sensory imagery, if a billiard is seen which is red and small, this must be perceived as violating the 
belief.  Given sensory imagery, if a billiard is somehow seen as "red" in advance of its size being 
perceived (it's hard to imagine how this would happen in a human), then the belief must create the 
prediction or expectation that the billiard will be gigantic, binding a hanging abstract concept for 
'gigantic' to the sensory imagery for the red billiard.  If the sensory image is completed later and the 
concept kernel for 'gigantic' is not satisfied by the completed sensory image for the red billiard, then 



 

the result should be a violated expectation, and this conflict should propagate back to the source of 
the expectation to be perceived as a violated belief.  

Generally, beliefs used within subjunctive imagery control the imagery directly, while beliefs used to 
interpret sensory information govern expectations and determine when an expectation has been 
violated.  However, "sensory" and "subjunctive" are relative; subjunctive imagery governed by one 
belief may intersect and violate another belief - any imagery is "sensory" relative to a belief if that 
imagery is not directly controlled by the belief.  Thus, abstract reasoning can detect inconsistencies 
in beliefs.  (An inconsistency should not cause a real mind to shriek in horror and collapse, but it 
should be a salient event that shifts the train of thought to hunting down the source of the 
inconsistency, looking at the beliefs and assertions relied upon and checking their 
confidences.  Inconsistency detections, expressed as thoughts, tend to create question imagery and 
knowledge goals which direct deliberation toward resolving the inconsistency.)  

2.6.5: Coevolution of thoughts and language: Origins of the internal narrative 

Why is the transformation of concept structures into linear word sequences, obviously necessary for 
spoken communication, also carried out within the internal stream of consciousness?  Why not use 
only the concept structures?  Why do we transform concept structures into grammatical sentences if 
nobody is listening?  Is this a necessary part of intelligence?  Must an AI do the same in order to 
function?  

The dispute over which came first, thought or language, is ancient in philosophy.  Modern students 
of the evolution of language try to break down the evolution of language into incrementally adaptive 
stages, describe multiple functions that are together required for language, and account for how 
preadaptations for those functions could have arisen [Hurford99].  Functional decompositions avoid 
some of the chicken-and-egg paradoxes that result from viewing language as a monolithic 
function.  Unfortunately, there are further paradoxes that result from viewing language 
independently from thought, or from viewing thought as a monolithic function.  

From the perspective of a cognitive theorist, language is only one function of a modern-day human's 
cognitive supersystem, but from the perspective of an evolutionary theorist, linguistic features 
determine which social selection pressures apply to the evolution of cognition at any given 
point.  Hence "coevolution of thought and language" rather than "evolution of language as one part 
of thought".  An evolutionary account of language alone will become "stuck" the first time it reaches 
a feature which is adaptive for cognition and preadaptive for language, but for which no 
independent linguistic selection pressure exists in the absence of an already-existent language.  Since 
there is currently no consensus on the functional decomposition of intelligence, contemporary 
language evolution theorists are sometimes unable to avoid such sticking points.  

On a first look DGI might appear to explain the evolvability of language merely by virtue of 
distinguishing between the concept level and the thought level; as long as there are simple reflexes 
that make use of learned category structure, elaboration of the concept level will be independently 
adaptive, even in the absence of a humanlike thought level.  The elaboration of the concept level to 
support cross-modality associations would appear to enable crossing the gap between a signal and a 
concept, and the elaboration of the concept level to support the blending or combination of 
concepts (adaptive because it enables the organism to perceive simple combinatorial regularities) 



 

would appear to enable primitive, nonsyntactical word sequences.  Overall this resembles 
Bickerton's [Bickerton90] picture of protolanguage as an evolutionary intermediate, in which learned 
signals convey learned concepts and multiple concepts blend, but without syntax to convey targeting 
information.  Once protolanguage existed, linguistic selection pressures proper could take over.  

However, as [Deacon97] points out, this picture does not explain why other species have not 
developed protolanguage.  Cross-modal association is not limited to humans or even 
primates.  Deacon suggests that some necessary mental steps in language are not only unintuitive but 
actually counterintuitive for nonhuman species, in the same way that the Wason Selection Test is 
counterintuitive for humans.  Deacon's account of this "awkward step" uses a different theory of 
intelligence as background, and I would hence take a different view of the nature of the awkward 
step: my guess is that chimpanzees find it extraordinarily hard to learn symbols as we understand 
them because language, even protolanguage, requires creating abstract mental imagery which can 
hang unsupported and then bind to a sensory referent later encountered.  The key difficulty in 
language - the step that is awkward for other species - is not the ability to associate signals; primates 
(and rats, for that matter) can readily associate a perceptual signal with a required action or a state of 
the world.  The awkward step is for a signal to evoke a category as abstract imagery, apart from 
immediate sensory referents, which can bind to a referent later encountered.  This step is completely 
routine for us, but could easily be almost impossible in the absence of design support for "hanging 
concepts in midair".  In the absence of thought, there are few reasons why a species would find it 
useful to hang concepts in midair.  In the absence of language, there are even fewer reasons to 
associate a perceptual signal with the evocation of a concept as abstract imagery.  Language is hard 
for other species, not because of a gap between the signal and the concept, but because language 
uses a feature of mental imagery for which there is insufficient design support in other species.  I 
suspect it may have been an adaptive context for abstract imagery, rather than linguistic selection 
pressures, which resulted in the adaptation which turned out to be preadaptive for symbolization 
and hence started some primate species sliding down a fitness gradient that included coevolution of 
thought and language.  

If, as this picture suggests, pre-hominid evolution primarily elaborated the concept layer (in the 
sense of elaborating brainware processes that support categories, not in the sense of adding learned 
concepts as such), it implies that the concept layer may contain the bulk of supporting functional 
complexity for human cognition.  This does not follow necessarily, since evolution may have spent 
much time but gotten little in return, but it is at least suggestive.  (This paper's section on the 
concept level is, in fact, the longest section.)  The above picture also suggests that the hominid 
family may have coevolved combinatorial concept structures that modify mental imagery internally 
(thoughts) and combinatorial concept structures that evoke mental imagery in conspecifics 
(language).  It is obvious that language makes use of many functions originally developed to support 
internal cognition, but coevolution of thought and language implies a corresponding opportunity for 
evolutionary elaboration of hominid thought to coopt functions originally evolved to support 
hominid language.  

The apparent necessity of the internal narrative for human deliberation could turn out to be an 
introspective illusion, but if real, it strongly suggests that linguistic functionality has been coopted 
for cognitive functionality during human evolution.  Linguistic features such as special processing of 
the tags that invoke concepts, or the use of syntax to organize complex internal targeting 
information for structures of combinatorial concepts, could also be adaptive or preadaptive for 



 

efficient thought.  Only a few such linguistic features would need to be coopted as necessary parts of 
thought before the "stream of consciousness" became an entrenched part of human 
intelligence.  This is probably a sufficient explanation for the existence of an internal narrative, 
possibly making the internal narrative a pure spandrel (emergent but nonadaptive feature).  However, 
caution in AI, rather than caution in evolutionary psychology, should impel us to wonder if our 
internal narrative serves an adaptive function.  For example, our internal narrative could express 
deliberation in a form that we can more readily process as (internal) sensory experience for purposes 
of introspection and memory; or the cognitive process of imposing internal thoughts on mental 
imagery could coopt a linguistic mechanism that also translates external communications into mental 
imagery; or the internal narrative may coopt social intelligence that models other humans by relating 
to their communications, in order to model the self.  But even if hominid evolution has coopted the 
internal narrative, the overall model still suggests that - while we cannot disentangle language from 
intelligence or disentangle the evolution of thought from the evolution of language - a de novo mind 
design could disentangle intelligence from language.  

This in turn suggests that an AI could use concept structures without serializing them as 
grammatical sentences forming a natural-language internal narrative, as long as all linguistic 
functionality coopted for human intelligence were reproduced in non-linguistic terms - including the 
expression of thoughts in an introspectively accessible form, and the use of complex internal 
targeting in concept structures.  Observing the AI may require recording the AI's thoughts and 
translating those thoughts into humanly understandable forms, and the programmers may need to 
communicate concept structures to the AI, but this need not imply an AI capable of understanding 
or producing human language.  True linguistic communication between humans and AIs might 
come much later in development, perhaps as an ordinary domain competency rather than a 
brainware-supported talent.  Of course, human-language understanding and natural human 
conversation is an extremely attractive goal, and would undoubtedly be attempted as early as possible; 
however, it appears that language need not be implemented immediately or as a necessary 
prerequisite of deliberation.  

2.7: The deliberation level 

2.7.1: From thoughts to deliberation 

In humans, higher levels of organization are generally more accessible to introspection.  It is not 
surprising if the internal cognitive events called "thoughts", as described in the last section, seem 
strangely familiar; we listen to thoughts all day.  The danger for AI developers is that cognitive 
content which is open to introspection is sometimes temptingly easy to translate directly into 
code.  But if humans have evolved a cyclic interaction of thought and imagery, this fact alone does 
not prove (or even argue) that the design is a good one.  What is the material benefit to intelligence 
of using blackboard mental imagery and sequiturs, instead of the simpler fixed algorithms of 
"reasoning" under classical AI?  

Evolution is characterized by ascending levels of organization of increasing elaboration, complexity, 
flexibility, richness, and computational costliness; the complexity of the higher layers is not 
automatically emergent solely from the bottom layer, but is instead subject to selection pressures and 
the evolution of complex functional adaptation - adaptation which is relevant at that level, and, as it 
turns out, sometimes preadaptive for the emergence of higher levels of organization.  This design 



 

signature emerges at least in part from the characteristic blindness of evolution, and may not be a 
necessary idiom of minds-in-general.  Nonetheless, past attempts to directly program cognitive 
phenomena which arise on post-modality levels of organization have failed profoundly.  There are 
specific AI pathologies that emerge from the attempt, such as the symbol grounding problem and 
the commonsense problem.  In humans concepts are smoothly flexible and expressive because they 
arise from modalities; thoughts are smoothly flexible and expressive because they arise from 
concepts.  Even considering the value of blackboard imagery and sequiturs in isolation - for example, 
by considering an AI architecture that used fixed algorithms of deliberation but used those 
algorithms to create and invoke DGI thoughts - there are still necessary reasons why deliberative 
patterns must be built on behaviors of the thought level, rather than being implemented as 
independent code; there are AI pathologies that would result from the attempt to implement 
deliberation in a purely top-down way.  There is top-down complexity in deliberation - adaptive 
functionality that is best viewed as applying to the deliberation level and not the thought level - but 
this complexity is mostly incarnated as behaviors of the thought level that support deliberative 
patterns.  

Because the deliberation level is flexibly emergent out of the sequiturs of the thought level, a train of 
thought can be diverted without being destroyed.  To use the example given earlier, if a deliberative 
mind wonders "Why is X a Y?" but no explanation is found, this local failure is not a disaster for 
deliberation as a whole.  The mind can mentally note the question as an unsolved puzzle and 
continue with other sequiturs.  A belief violation does not destroy a mind; it becomes a focus of 
attention and one more thing to ponder.  Discovering inconsistent beliefs does not cause a 
meltdown, as it would in a system of monotonic logic, but instead shifts the focus of attention to 
checking and revising the deductive logic.  Deliberation weaves multiple, intersecting threads of 
reasoning through intersecting imagery, with the waystations and even the final destination not 
always known in advance.  

In the universe of bad TV shows, speaking the Epimenides Paradox31 "This sentence is false" to an 
artificial mind causes that mind to scream in horror and collapse into a heap of smoldering 
parts.  This is based on a stereotype of thought processes that cannot divert, cannot halt, and 
possess no bottom-up ability to notice regularities across an extended thought sequence.  Given how 
deliberation emerges from the thought level, it is possible to imagine a sufficiently sophisticated, 
sufficiently reflective AI that could naturally surmount the Epimenides Paradox.  Encountering the 
paradox "This sentence is false" would probably indeed lead to a looping thought sequence at first, 
but this would not cause the AI to become permanently stuck; it would instead lead to 
categorization across repeated thoughts (like a human noticing the paradox after a few cycles), which 
categorization would then become salient and could be pondered in its own right by other 
sequiturs.  If the AI is sufficiently competent at deductive reasoning and introspective generalization, 
it could generalize across the specific instances of "If the statement is true, it must be false" and "If 
the statement is false, it must be true" as two general classes of thoughts produced by the paradox, 
and show that reasoning from a thought of one class leads to a thought of the other class; if so the 
AI could deduce - not just inductively notice, but deductively confirm - that the thought process is 
an eternal loop.  Of course, we won't know whether it really works this way until we try it.  

The use of a blackboard sequitur model is not automatically sufficient for deep reflectivity; an AI 
that possessed a limited repertoire of sequiturs, no reflectivity, no ability to employ reflective 
categorization, and no ability to notice when a train of thought hasn't yielded anything useful for a 



 

while, might still loop eternally through the paradox as the emergent but useless product of the 
sequitur repertoire.  Transcending the Epimenides Paradox requires the ability to perform inductive 
generalization and deductive reasoning on introspective experiences.  But it also requires bottom-up 
organization in deliberation, so that a spontaneous introspective generalization can capture the focus 
of attention.  Deliberation must emerge from thoughts, not just use thoughts to implement rigid 
algorithms.  

Having reached the deliberation level, we finally turn from our long description of what a mind is, 
and focus at last on what a mind does - the useful operations implemented by sequences of thoughts 
that are structures of concepts that are abstracted from sensory experience in sensory modalities.  

2.7.2: The dimensions of intelligence 

Philosophers frequently define "truth" as an agreement between belief and reality; formally, this is 
known as the "correspondence theory" of truth [James11].  Under the correspondence theory of 
truth, philosophers of Artificial Intelligence have often defined "knowledge" as a mapping between 
internal data structures and external physical reality [Newell80].  Considered in isolation, the 
correspondence theory of knowledge is easily abused; it can be used to argue on the basis of 
mappings which turn out to exist entirely in the mind of the programmer.  

Intelligence is an evolutionary advantage because it enables us to model and predict and manipulate 
reality.  In saying this, I am not advocating the philosophical position that only useful knowledge can 
be true.  There is enough regularity in the activity of acquiring knowledge, over a broad spectrum of 
problems that require knowledge, that evolution has tended to create independent cognitive forces 
for truthseeking.  Individual organisms are best thought of as adaptation-executers rather than 
fitness-maximizers [Tooby92].  "Seeking truth", even when viewed as a mere local subtask of a larger 
problem, has sufficient functional autonomy that many human adaptations are better thought of as 
"truthseeking" than "useful-belief-seeking".  Furthermore, under my own philosophy, I would say 
that beliefs are useful because they are true, not "true" because they are useful.  

But usefulness is a stronger and more reliable test of truth; it is harder to cheat.  The social process of 
science applies prediction as a test of models, and the same models that yield successful predictions 
are often good enough approximations to construct technology (manipulation).  

I would distinguish four successively stronger grades of binding between a model and reality:  

• A sensory binding occurs when there is a mapping between cognitive content in the model 
and characteristics of external reality.  Without tests of usefulness, there is no formal way to 
prevent abuse of claimed sensory bindings; the supposed mapping may lie mostly in the 
mind of the observer.  However, if the system as a whole undergoes tests of usefulness, 
much of the task of extending and improving the model will still locally consist of 
discovering good sensory bindings - finding beliefs that are true under the intuitive 
"correspondence theory" of truth.  

• A predictive binding occurs when a model can be used to correctly predict future 
events.  From the AI's internal perspective, a predictive binding occurs when the model can 
be used to correctly predict future sensory inputs.  The AI may be called upon to make 
successful predictions about external reality (outside the computer), virtual 



 

microenvironments (inside the computer but outside the AI), or the outcome of cognitive 
processes (inside the AI, but proceeding distinct from the prediction).  A "sensory input" 
can derive not only from a sensory device targeted on external reality, but also from sensory 
cognition targeted on any process whose outcome, on the level predicted, is not subject to 
direct control.  (Of course, from our perspective, prediction of the "real world" remains the 
strongest test.)  

• A decisive binding occurs when the model can predict the effects of several possible actions 
on reality, and choose whichever action yields the best result under some goal system (see 
below).  By predicting outcomes under several possible world-states, consisting of the 
present world-state plus each of several possible actions, it becomes possible to choose 
between futures.  

• A manipulative binding occurs when the AI can describe a desirable future with subjunctive 
imagery, and invent a sequence of actions which leads to that future.  Where decision involves 
selecting one action from a predetermined and bounded set, manipulation involves inventing 
new actions, perhaps actions previously unperceived because the set of possible actions is 
unbounded or computationally large.  The simplest form of manipulation is backward 
chaining from parent goals to child goals using causal beliefs; this is not the only form of 
manipulation, but it is superior to exhaustive forward search from all possible actions.  

I also distinguish three successive grades of variable complexity:  

• A discrete variable has referents selected from a bounded set which is computationally small - 
for example, a set of twenty possible actions, or a set of twenty-six possible lowercase 
letters.  The binary presence or absence of a feature is also a discrete variable.  

• A quantitative variable is selected from the set of real numbers, or from a computationally 
large set which approximates a smoothly varying scalar quantity (such as the set of floating-
point numbers).  

• A patterned variable is composed of a finite number of quantitative or discrete 
elements.  Examples:  A finite string of lowercase letters, e.g. "mkrznye".  A real point in 3D 
space (three quantitative elements).  A 2D black-and-white image (2D array of binary pixels).  

The dimension of variable complexity is orthogonal to the SPDM (sensory-predictive-decisive-
manipulative) dimension, but like SPDM it describes successively tougher tests of intelligence.  A 
decisive binding from desired result to desirable action is computationally feasible only when the 
"action" is a discrete variable chosen from a small set - small enough that each possible action can be 
modeled.  When the action is a quantitative variable, selected from computationally large sets such as 
the floating-point numbers in the interval [0, 1], some form of manipulative binding, such as 
backward chaining, is necessary to arrive at the specific action required.  (Note that adding a 
continuous time parameter to a discrete action renders it quantitative.)  Binding precise quantitative 
goal imagery to a precise quantitative action cannot be done by exhaustive testing of the alternatives; 
it requires a way to transform the goal imagery so as to arrive at subgoal imagery or action 
imagery.  The simplest transformation is the identity relation - but even the identity transformation 
is not possible to a purely forward-search mechanism.  The next most straightforward method would 
be to employ a causal belief that specifies a reversible relation between the antecedent and the 
consequent.  In real-time control tasks, motor modalities (in humans, the entire sensorimotor system) 
may automatically produce action symphonies in order to achieve quantitative or patterned goals.  



 

A string of several discrete or quantitative variables creates a patterned variable, which is also likely 
to be computationally intractable for exhaustive forward search.  Binding a patterned goal to a 
patterned action, if the relation is not one of direct identity, requires (again) a causal belief that 
specifies a reversible relation between the antecedent and the consequent, or (if no such belief is 
forthcoming) deliberative analysis of complex regularities in the relation between the action and the 
outcome, or exploratory tweaking followed by induction on which tweaks increase the apparent 
similarity between the outcome and the desired outcome.  

There are levels of organization within bindings; a loose binding at one level can give rise to a tighter 
binding at a higher level.  The rods and cones of the retina correspond to incoming photons that 
correspond to points on the surface of an object.  The binding between a metaphorical pixel in the 
retina and a point in a real-world surface is very weak, very breakable; a stray ray of light can wildly 
change the detected optical intensity.  But the actual sensory experience occupies one level of 
organization above individual pixels.  The fragile sensory binding between retinal pixels and surface 
points, on a lower level of organization, gives rise to a solid sensory binding between our perception 
of the entire object and the object itself.  A match between two discrete variables or two rough 
quantitative variables can arise by chance; a match between two patterned variables on a higher 
holonic level of organization is far less likely to arise from complete coincidence, though it may arise 
from a cause other than the obvious.  The concept kernels in human visual recognition likewise bind 
to the entire perceptual experience of an object, not to individual pixels of the object.  On an even 
higher level of organization, the manipulative binding between human intelligence and the real world 
is nailed down by many individually tight sensory bindings between conceptual imagery and real-world 
referents.  Under the human implementation, there are at least three levels of organization within the 
correspondence theory of truth!  The AI pathology that we perceive as "weak semantics" - which is 
very hard to define, but is an intuitive impression shared by many AI philosophers - may arise from 
omitting levels of organization in the binding between a model and its referent.  

2.7.3: Actions 

The series of motor actions I use to strike a key on my keyboard have enough degrees of freedom 
that "which key I strike", as a discrete variable, or "the sequence of keys struck", as a patterned 
variable, are both subject to direct specification.  I do not need to engage in complex planning to 
strike the key sequence "hello world" or "labm4"; I can specify the words or letters directly and 
without need for complex planning.  My motor areas and cerebellum do an enormous amount of 
work behind the scenes, but it is work that has been optimized to the point of subjective 
invisibility.  A keystroke is thus an action for pragmatic purposes, although for a novice typist it might 
be a goal.  As a first approximation, goal imagery has been reduced to action imagery when the 
imagery can direct a realtime skill in the relevant modality.  This does not necessarily mean that 
actions are handed off to skills with no further interaction; realtime manipulations sometimes go 
wrong, in which case the interrelation between goals and actions and skills becomes more intricate, 
sometimes with multiple changing goals interacting with realtime skills.  Imagery approaches the 
action level as it becomes able to interact with realtime skills.  

Sometimes a goal does not directly reduce to actions because the goal referent is physically distant or 
physically separated from the "effectors" - the motor appendages or their virtual equivalents - so that 
manipulating the goal referent depends on first overcoming the physical separation as a 
subproblem.  However, in the routine activity of modern-day humans, another very common reason 



 

why goal imagery does not translate directly into action imagery is that the goal imagery is a high-
level abstract characteristic, cognitively separated from the realm of direct actions.  I can control every 
keystroke of my typing, but the quantitative percept of writing quality32 referred to by the goal imagery 
of high writing quality is not subject to direct manipulation.  I cannot directly set my writing quality to 
equal that of Shakespeare, in the way that I can directly set a keystroke to equal "H", because writing 
quality is a derived, abstract quantity.  A better word than "abstract" is "holonic", the term used 
earlier from [Koestler67] and used to describe the way in which a single quality may simultaneously 
be a whole composed of parts, and a part in a greater whole.  Writing quality is a quantitative holon 
which is eventually bound to the series of discrete keystrokes.  I can directly choose keystrokes, but 
cannot directly choose the writing-quality holon.  To increase the writing quality of a paragraph I 
must link the writing-quality holon to lower-level holons such as correct spelling and omitting needless 
words, which are qualities of the sentences holons, which are created through keystroke actions.  Action 
imagery is typically, though not always, the level on which variables are completely free (directly 
specifiable with many degrees of freedom); higher levels involve interacting constraints which must 
be resolved through deliberation.  

2.7.4: Goals 

The very-high-level abstract goal imagery for writing quality is bound to directly specifiable action 
imagery for words and keystrokes through an intermediate series of child goals which inherit 
desirability from parent goals.  But what are goals?  What is desirability?  So far I have been using an 
intuitive definition of these terms, which often suffices for describing how the goal system interacts 
with other systems, but is not a description of the goal system itself.  

Unfortunately, the human goal system is somewhat... confused... as you know if you're a human.  Most 
of the human goal system originally evolved in the absence of deliberative intelligence, and as a 
result, behaviors that contribute to survival and reproduction tend to be evolved as independent 
drives.  Taking the intentionalist stance toward evolution, we would say that the sex drive is a child 
goal of reproduction.  Over evolutionary time this might be a valid stance.  But individual organisms 
are best regarded as adaptation-executers rather than fitness-maximizers, and the sex drive is not 
cognitively a child goal of reproduction; hence the modern use of contraception.  Further 
complications are introduced at the primate level by the existence of complex social groups; 
consequently primates have "moral" adaptations, such as reciprocal altruism, third-party intervention 
to resolve conflicts ("community concern"), and moralistic aggression against community offenders 
[Flack00].  Still further complications are introduced by the existence of deliberative reasoning and 
linguistic communication in humans; humans are imperfectly deceptive social organisms that argue 
about each other's motives in adaptive contexts.  This has produced what I can only call 
"philosophical" adaptations, such as the ways we reason about causation in moral arguments - 
ultimately giving us the ability to pass (negative!) judgement on the moral worth of our evolved goal 
systems and evolution itself.  

It is not my intent to untangle that vast web of causality in this paper, although I have written 
(informally but at length) about the problem elsewhere [Yudkowsky01], including a description of 
the cognitive and motivational architectures required for a mind to engage in such apparently 
paradoxical behaviors as passing coherent judgement on its own top-level goals.  (For example, a 
mind may regard the current representation of morals as a probabilistic approximation to a moral 
referent that can be reasoned about.)  The architecture of morality is a pursuit that goes along with 



 

the pursuit of general intelligence, and the two should not be parted, for reasons that should be 
obvious and will become even more obvious in Part III; but unfortunately there is simply not 
enough room to deal with the issues here.  I will note, however, that the human goal system 
sometimes does the Wrong Thing33 and I do not believe AI should follow in those footsteps; a mind 
may share our moral frame of reference without being a functional duplicate of the human goal 
supersystem.  

Within this paper I will set aside the question of moral reasoning and take for granted that the 
system supports moral content.  The question then becomes how moral content binds to goal 
imagery and ultimately to actions.  

The imagery that describes the supergoal is the moral content and describes the events or world-
states that the mind regards as having intrinsic value.  In classical terms, the supergoal description is 
analogous to the intrinsic utility function.  Classically, the total utility of an event or world-state is its 
intrinsic utility, plus the sum of the intrinsic utilities (positive or negative) of the future events to 
which that event is predicted to lead, multiplied in each case by the predicted probability of the 
future event as a consequence.  (Note that predicted consequences include both direct and indirect 
consequences, i.e., consequences of consequences are included in the sum.)  This may appear at first 
glance to be yet another oversimplified Good Old-Fashioned AI definition, but for once I shall 
argue in favor; the classical definition is more fruitful of complex behaviors than first apparent.  The 
property desirability should be coextensive with, and should behave identically to, the property is-
predicted-to-lead-to-intrinsic-utility.  

Determining which actions are predicted to lead to the greatest total intrinsic utility, and inventing 
actions which lead to greater intrinsic utility, has subjective regularities when considered as a 
cognitive problem and external regularities when considered as an event structure.  These regularities 
are called subgoals.  Subgoals define areas where the problem can be efficiently viewed from a local 
perspective.  Rather than the mind needing to rethink the entire chain of reasoning "Action A leads 
to B, which leads to C, which leads to D, [...], which leads to actual intrinsic utility Z", there is a 
useful regularity that actions which lead to B are mostly predicted to lead through the chain to 
Z.  Similarly, the mind can consider which of subgoals B1, B2, B3 are most likely to lead to C, or 
consider which subgoals C1, C2, C3 are together sufficient for D, without rethinking the rest of the 
logic to Z.  

This network (not hierarchical) event structure is an imperfect regularity; desirability is heritable only 
to the extent, and exactly to the extent, that predicted-to-lead-to-Z-ness is heritable.  Our low-
entropy universe has category structure, but not perfect category structure.  Using imagery to 
describe an event E which is predicted to lead to event F is never perfect; perhaps most real-world 
states that fit description E lead to events that fit description F, but it would be very rare, outside of 
pure mathematics, to find a case where the prediction is perfect.  There will always be some states in 
the volume carved out by the description E that lead to states outside the volume carved out by 
description F.  If C is predicted to lead to D, and B is predicted to lead to C, then usually B will 
inherit C's predicted-to-lead-to-D-ness.  However, it may be that B leads to a special case of C which 
does not lead to D; in this case, B would not inherit C's predicted-to-lead-to-D-ness.  Therefore, if C 
had inherited desirability from D, B would not inherit C's desirability either.  



 

To deal with a world of imperfect regularities, goal systems model the regularities in the irregularities, 
using descriptive constraints, distant entanglements, and global heuristics.  If events fitting 
description E usually but not always lead to events fitting description F, then the mental imagery 
describing E, or even the concepts making up the description of E, may be refined to narrow the 
extensional class to eliminate events that seem to fit E but that don't turn out to lead to F.  These 
"descriptive constraints" drive the AI to focus on concepts and categories that expose predictive, 
causal, and manipulable regularities in reality, rather than just surface regularities.  

A further refinement is "distant entanglements"; for example, an action A that leads to B which 
leads to C, but which also simultaneously has side effects that block D, which is C's source of 
desirability.  Another kind of entanglement is when action A leads to unrelated side effect S, which 
has negative utility outweighing the desirability inherited from B.  

"Global heuristics" describe goal regularities that are general across many problem contexts, and 
which can therefore be used to rapidly recognize positive and negative characteristics; the concept 
"margin for error" is a category that describes an important feature of many plans, and the belief 
"margin for error supports the local goal" is a global heuristic that positively links members of the 
perceptual category margin for error to the local goal context, without requiring separate recapitulation 
of the inductive and deductive support for the general heuristic.  Similarly, in self-modifying or at 
least self-regulating AIs, "minimize memory usage" is a subgoal that many other subgoals and 
actions may impact, so the perceptual recognition of events in the "memory usage" category or 
"leads to memory usage" categories implies entanglement with a particular distant goal.  

Descriptive constraints, distant entanglements, and global heuristics do not violate the desirability-
as-prediction model; descriptive constraints, distant entanglements, and global heuristics are also 
useful for modeling complex predictions, in the same way and for the same reasons as they are 
useful in modeling goals.  However, there are at least three reasons for the activity of planning to 
differ from the activity of prediction.  First, prediction typically proceeds forward from a definite state 
of the universe to determine what comes after, while planning often (though not always) reasons 
backward from goal imagery to pick out one point in a space of possible universes, with the space's 
dimensions determined by degrees of freedom in available actions.  Second, desirabilities are 
differential, unlike predictions; if A and ~A both lead to the same endpoint E, then from a 
predictive standpoint this may increase the confidence in E, but from a planning standpoint it means 
that neither A nor ~A will inherit net desirability from E.  The final effect of desirability is that an AI 
chooses the most desirable action, an operation which is comparative rather than absolute; if both A 
and ~A lead to E, neither A nor ~A transmit differential desirability to actions.  

Third, while both implication and causation are useful for reasoning about predictions, only causal links 
are useful in reasoning about goals.  If the observation of A is usually followed by the observation of 
B, then this makes A a good predictor of B - regardless of whether A is the direct cause of B, or 
whether there is a hidden third cause C which is the direct cause of both A and B.  I would regard 
implication as an emergent property of a directed network of events whose underlying behavior is that 
of causation; if C causes A, and then causes B, then A will imply B.  Both "A causes B" (direct causal 
link) and "A implies B" (mutual causal link from C) are useful in prediction.  However, in planning, 
the distinction between "A directly causes B" and "A and B are both effects of C" leads to a 
distinction between "Actions that lead to A, as such, are likely to lead to B" and "Actions that lead 
directly to A, without first leading through C, are unlikely to have any effect on B".  This distinction 



 

also means that experiments in manipulation tend to single out real causal links in a way that 
predictive tests do not.  If A implies B then it is often the case that C causes both A and B, but it is 
rarer in most real-world problems for an action intended to affect A to separately and invisibly affect 
the hidden third cause C, giving rise to false confirmation of direct causality34.  (Although it happens, 
especially in economic and psychological experiments.)  

2.7.5: Activities of intelligence:  Explanation, prediction, discovery, planning, design 

So far, this section has introduced the distinction between sensory, predictive, decisive, and 
manipulative models; discrete, quantitative, and patterned variables; the holonic model of high-level 
and low-level patterns; and supergoal referents, goal imagery, and actions.  These ideas provide a 
framework for understanding the immediate subtasks of intelligence - the moment-to-moment 
activities of deliberation.  In carrying out a high-level cognitive task such as design a bicycle, the 
subtasks consist of crossing gaps from very high-level holons such as good transport to the holon fast 
propulsion to the holon pushing on the ground to the holon wheel to the holons for spokes and tires, until 
finally the holons become directly specifiable in terms of design components and design materials 
directly available to the AI.  

The activities of intelligence can be described as knowledge completion in the service of goal 
completion.  To complete a bicycle, one must first complete a design for a bicycle.  To carry out a plan, 
one must complete a mental picture of a plan.  Because both planning and design make heavy use of 
knowledge, they often spawn purely knowledge-directed activities such as explanation, prediction, 
and discovery.  These activities are messy, non-inclusive categories, but they illustrate the general 
sorts of things that general minds do.  

Knowledge activities are carried out both on a large scale, as major strategic goals, and on a small 
scale, in routine subtasks.  For example, "explanation" seeks to extend current knowledge, through 
deduction or induction or experiment, to fill the gap left by the unknown cause of a known 
effect.  The unknown cause will at least be the referent of question imagery, which will bring into 
play sequiturs and verifiers which react to open questions.  If the problem becomes salient enough, 
and difficult enough, finding the unknown cause may be promoted from question imagery to an 
internal goal, allowing the AI to reason deliberatively about which problem-solving strategies to 
deploy.  The knowledge goal for "building a plan" inherits desirability from the objective of the plan, 
since creating a plan is required for (is a subgoal of) achieving the objective of the plan.  The 
knowledge goal for explaining an observed failure might inherit desirability from the goal achievable 
when the failure is fixed.  Since knowledge goals can govern actual actions and not just the flow of 
sequiturs, they should be distinguished from question imagery.  Knowledge goals also permit 
reflective reasoning about what kind of internal actions are likely to lead to solving the problem; 
knowledge goals may invoke sequiturs that search for beliefs about solving knowledge problems, not just 
beliefs about the specific problem at hand.  

Explanation fills holes in knowledge about the past.  Prediction fills holes in knowledge about the 
future.  Discovery fills holes in knowledge about the present.  Design fills gaps in the mental model 
of a tool.  Planning fills gaps in a model of future strategies and actions.  Explanation, prediction, 
discovery, and design may be employed in the pursuit of a specific real-world goal, or as an 
independent pursuit in the anticipation of the resulting knowledge being useful in future goals - 
"curiosity".  Curiosity fills completely general gaps (rather than being targeted on specific, already-



 

known gaps), and involves the use of forward-looking reasoning and experimentation, rather than 
backward chaining from specific desired knowledge goals; curiosity might be thought of as filling the 
very abstract goal of "finding out X, where X refers to anything that will turn out to be a good thing 
to know later on, even though I don't know specifically what X is."  (Curiosity involves a very 
abstract link to intrinsic utility, but one which is nonetheless completely true - curiosity is useful.)  

What all the activities have in common is that they involve reasoning about a complex, holonic 
model of causes and effects.  "Explanation" fills in holes about the past, which is a complex system 
of cause and effect.  "Prediction" fills in holes in the future, which is a complex system of cause and 
effect.  "Design" reasons about tools, which are complex holonic systems of cause and 
effect.  "Planning" reasons about strategies, which are complex holonic systems of cause and 
effect.  Intelligent reasoning completes knowledge goals and answers questions in a complex holonic 
causal model, in order to achieve goal referents in a complex holonic causal system.  

This gives us the three elements of DGI:  

• The what of intelligence:  Intelligence consists, in humans, of a highly modular brain with 
dozens of areas, which implements a deliberative process (built on thoughts built of 
concepts built on sensory modalities built on neurons); plus contributing subsystems (e.g. 
memory); plus surrounding subsystems (e.g. autonomic regulation); plus leftover subsystems 
implementing pre-deliberative approximations of deliberative processes; plus emotions, 
instincts, intuitions and other systems that influence the deliberative process in ways that 
were adaptive in the ancestral environment; plus everything else.  A similar system is 
contemplated for AIs, of roughly the same order of complexity, but inevitably less 
messy.  Both supersystems are characterized by levels of organization:  Code / neurons, 
modalities, concepts, thoughts, and deliberation.  

• The why of intelligence:  The cause of human intelligence is evolution.  Intelligence is an 
evolutionary advantage because it enables us to model reality, including external reality, 
social reality and internal reality, which in turn enables us to predict, decide, and manipulate 
reality.  AIs will have intelligence because we, the human programmers, wish to accomplish a 
goal that can best be reached through smart AI, or because we regard the act of creating AI 
as having intrinsic utility; in either case, building AI requires building a deliberative 
supersystem that manipulates reality.  

• The how of intelligence:  Intelligence (deliberate reasoning) completes knowledge goals and 
answers questions in a complex holonic causal model, in order to achieve goal referents in a 
complex holonic causal system.  

2.7.6: General intelligence 

The evolutionary context of intelligence has historically included environmental adaptive contexts, 
social adaptive contexts (modeling of other minds), and reflective adaptive contexts (modeling of 
internal reality).  In evolving to fit a wide variety of adaptive contexts, we have acquired much 
cognitive functionality that is visibly specialized for particular adaptive problems, but we have also 
acquired cognitive functionality that is adaptive across many contexts, and adaptive functionality that 
coopts previously specialized functionality for wider use.  Humans can acquire substantial 
competence in modeling, predicting, and manipulating fully general regularities of our low-entropy 
universe.  We call this ability "general intelligence".  In some ways our ability is very weak; we often 



 

solve general problems abstractly instead of perceptually, so we can't deliberatively solve problems 
on the order of realtime visual interpretation of a 3D scene.  But we can often say something which 
is true enough to be useful and simple enough to be tractable.  We can deliberate on how vision 
works, even though we can't deliberate fast enough to perform realtime visual processing.  

There is currently a broad trend toward one-to-one mappings of cognitive subsystems to domain 
competencies.  While in popular psychology this often degenerates into phrenology, such abuses are 
of course irrelevant to genuine hypotheses about mappings between specialized domain 
competencies and specialized computational subsystems, or decisions to pursue specialized AI.  In 
DGI, human intelligence is held to consist of a supersystem with complex interdependent 
subsystems that exhibit internal functional specialization, but this does not rule out the existence of 
other subsystems that contribute solely or primarily to specific cognitive talents and domain 
competencies, or subsystems that contribute more heavily to some cognitive talents than 
others.  The mapping from computational subsystems to cognitive talents is many-to-many, and the 
mapping from cognitive talents plus acquired expertise to domain competencies is also many-to-
many, but this does not rule out specific correspondences between human variances in the 
"computing power" (generalized cognitive resources) allocated to computational subsystems and 
observed variances in cognitive talents or domain competencies.  

However, the subject matter of AI is not the variance between humans, but the base of adaptive 
complexity common to all humans (or at least all neurologically intact humans).  If increasing the 
resources allocated to a cognitive subsystem yields an increase in a cognitive talent or domain 
competency, it does not follow that the talent or competency can be implemented by that subsystem 
alone.  It should also be noted that under the traditional paradigm of programming, programmers' 
thoughts about solving specific problems are translated into code, and this is the idiom underlying 
most branches of classical AI; for example, expert systems engineers supposedly translate the beliefs 
in specific domains directly into the cognitive content of the AI.  This would naturally tend to yield a 
view of intelligence in which there is a one-to-one mapping between subsystems and 
competencies.  I believe this is the underlying cause of the atmosphere in which the quest for 
intelligent AI is greeted with the reply: "AI that is intelligent in what domain?"  

This does not mean that exploration in specialized AI is entirely worthless; in fact, DGI's levels of 
organization suggest a specific class of cases where specialized AI may prove fruitful.  Sensory 
modalities lie directly above the code level; sensory modalities were some of the first specialized 
cognitive subsystems to evolve and hence are not as reliant on a supporting supersystem framework, 
although other parts of the supersystem depend heavily on modalities.  This suggests a specialized 
approach, with programmers directly writing code, may prove fruitful if the project is constructing a 
sensory modality.  And indeed, AI research that focuses on creating sensory systems and 
sensorimotor systems continues to yield real progress.  Such researchers are following evolution's 
incremental path, often knowingly so, and thereby avoiding the pitfalls that result from violating the 
levels of organization.  

However, I still do not believe it is possible to match the deliberative supersystem's inherently broad 
applicability by implementing a separate computational subsystem for each problem context.  Not 
only is it impossible to duplicate general intelligence through the sum of such subsystems, I suspect 
it is impossible to achieve humanlike performance in most single contexts using specialized 
AI.  Occasionally we use abstract deliberation to solve modality-level problems for which we lack 



 

sensory modalities, and in this case it is possible for AI projects to solve the problem on the 
modality level, but the resulting problem-solving method will be very different from the human one, 
and will not generalize outside the specific domain.  Hence Deep Blue.  

Even on the level of individual domain competencies, not all competencies are unrelated to each 
other.  Different minds may have different abilities in different domains; a mind may have an "ability 
surface", with hills and spikes in areas of high ability; but a spike in an area such as learning or self-
improvement tends to raise the rest of the ability surface [Voss01].  The talents and subsystems that are 
general in the sense of contributing to many domain competencies - and the domain competencies 
of self-improvement; see Part III - occupy a strategic position in AI analogous to the central squares 
in chess.  

2.7.7: Self 

When can an AI legitimately use the word "I"?  

(For the sake of this discussion, I must give the AI a temporary proper name; I will use "Aisa" 
during this discussion.)  

A classical AI that contains a LISP token for "hamburger" knows nothing about hamburgers; at 
most the AI can recognize recurring instances of a letter-sequence typed by programmers.  Giving 
an AI a suggestively named data structure or function does not make that component the functional 
analogue of the similarly named human feature [McDermott76].  At what point can Aisa talk about 
something called "Aisa" without Drew McDermott popping up and accusing us of using a term that 
might as well translate to "G0025"?  

Suppose that Aisa, in addition to modeling virtual environments and/or the outside world, also 
models certain aspects of internal reality, such as the effectiveness of heuristic beliefs used on 
various occasions.  The degrees of binding between a model and reality are sensory, predictive, 
decisive, and manipulative.  Suppose that Aisa can sense when a heuristic is employed, notice that 
heuristics tend to be employed in certain contexts and that they tend to have certain results, and use 
this inductive evidence to formulate expectations about when a heuristic will be employed and 
predict the results on its employment.  Aisa now predictively models Aisa; it forms beliefs about its 
operation by observing the introspectively visible effects of its underlying mechanisms.  Tightening 
the binding from predictive to manipulative requires that Aisa link introspective observations to 
internal actions; for example, Aisa may observe that devoting discretionary computational power to 
a certain subprocess yields thoughts of a certain kind, and that thoughts of this kind are useful in 
certain contexts, and subsequently devote discretionary power to that subprocess in those contexts.  

A manipulative binding between Aisa and Aisa's model of Aisa is enough to let Aisa legitimately 
say  "Aisa is using heuristic X", such that using the term "Aisa" is materially different from using 
"hamburger" or "G0025".  But can Aisa legitimately say, "I am using heuristic X"?  

My favorite quote on this subject comes from Douglas Lenat, although I cannot find the reference 
and am thus quoting from memory:  "While Cyc knows that there is a thing called Cyc, and that Cyc 
is a computer, it does not know that it is Cyc."  Personally, I would question whether Cyc knows that 



 

Cyc is a computer - but regardless, Lenat has made a legitimate and fundamental distinction.  Aisa 
modeling a thing called Aisa is not the same as Aisa modeling itself.  

In an odd sense, assuming that the problem exists is enough to solve the problem.  If another step is 
required before Aisa can say "I am using heuristic X", then there must be a material difference 
between saying "Aisa is using heuristic X" and "I am using heuristic X".  And that is one possible 
answer:  Aisa can say "I" when the behavior of modeling itself is materially different, because of the 
self-reference, from the behavior of modeling another AI that happens to look like Aisa.  

One specific case where self-modeling is materially different than other-modeling is in 
planning.  Employing a complex plan in which a linear sequence of actions A, B, C are individually 
necessary and together sufficient to accomplish goal G requires an implicit assumption that the AI 
will follow through on its own plans; action A is useless unless it is followed by actions B and C, and 
action A is therefore not desirable unless actions B and C are predicted to follow.  Making complex 
plans does not actually require self-modeling, since many classical AIs engage in planning-like 
behaviors using programmatic assumptions in place of reflective reasoning, and in humans the 
assumption is usually automatic rather than being the subject of deliberation.  However, deliberate 
reflective reasoning about complex plans requires an understanding that the future actions of the AI 
are determined by the decisions of the AI's future self, that there is some degree of continuity 
(although not perfect continuity) between present and future selves, and that there is thus some 
degree of continuity between present decisions and future actions.  

An intelligent mind navigates a universe with four major classes of variables:  Random factors, 
variables with hidden values, the actions of other agents, and the actions of the self.  The space of 
possible actions differs from the spaces carved out by other variables because the space of possible 
actions is under the AI's control.  One difference between "Aisa will use heuristic X" and "I will use 
heuristic X" is the degree to which heuristic usage is under Aisa's deliberate control - the degree to 
which Aisa has goals relating to heuristic usage, and hence the degree to which the observation "I 
predict that I will use heuristic X" affects Aisa's subsequent actions.  Aisa, if sufficiently competent 
at modeling other minds, might predict that a similar AI named Aileen would also use heuristic X, 
but beliefs about Aileen's behaviors would be derived from predictive modeling of Aileen, and not 
decisive planning of internal actions based on goal-oriented selection from the space of 
possibilities.  There is a cognitive difference between Aisa saying "I predict Aileen will use heuristic 
X" and "I plan to use heuristic X".  On a systemic level, the global specialness of "I" would be nailed 
down by those heuristics, beliefs, and expectations that individually relate specially to "I" because of 
introspective reflectivity or the space of undecided but decidable actions.  It is my opinion that such 
an AI would be able to legitimately use the word "I", although in humans the specialness of "I" may 
be nailed down by additional cognitive forces as well.  (Legitimate use of "I" is explicitly not offered 
as a necessary and sufficient condition for the "hard problem of conscious experience" [Chalmers95] 
or social, legal, and moral personhood.)  

3: Part III: Seed AI 

In the space between the theory of human intelligence and the theory of general AI is the ghostly 
outline of a theory of minds in general, specialized for humans and AIs.  I have not tried to lay out 
such a theory explicitly, confining myself to discussing those specific similarities and differences of 
humans and AIs that I feel are worth guessing in advance.  The Copernican revolution for cognitive 



 

science - humans as a noncentral special case - is not yet ready; two points are not enough to draw a 
curve, and currently we only have one.  Nonetheless, humans are in fact a noncentral special case, and 
this abstract fact is knowable even if our current theories are anthropocentric.  

There is a fundamental rift between evolutionary design and deliberative design.  From the 
perspective of a deliberative intelligence - a human, for instance - evolution is the degenerate case of 
design-and-test where intelligence equals zero.  Mutations are atomic; recombinations are random; 
changes are made on the genotype's lowest level of organization (flipping genetic bits); the grain size 
of the component tested is the whole organism; and the goodness metric operates solely through 
induction on historically encountered cases, without deductive reasoning about which contextual 
factors may later change35.  The evolution of evolvability [Wagner96] improves this picture 
somewhat.  There is a tendency for low-level genetic bits to exert control over high-level complexity, 
so that changes to those genes can create high-level changes.  Blind selection pressures can create 
self-wiring and self-repairing systems that turn out to be highly evolvable because of their ability to 
phenotypically adapt to genotypical changes.  Nonetheless, the evolution of evolvability is not a 
substitute for intelligent design.  Evolution works, despite local inefficiencies, because evolution 
exerts vast cumulative design pressure over time.  

However, the total amount of design pressure exerted over a given time is limited; there is only a 
limited amount of selection pressure to be divided up among all the genetic variances selected on in 
any given generation [Worden95].  One obvious consequence is that evolutionarily recent 
adaptations will probably be less optimized than those which are evolutionarily ancient.  In DGI, the 
evolutionary phylogeny of intelligence roughly recapitulates its functional ontogeny; it follows that 
higher levels of organization may contain less total complexity than lower levels, although 
sometimes higher levels of organization are also more evolvable.  Therefore, a subtler consequence 
is that the lower levels of organization are likely to be less well adapted to evolutionarily recent 
innovations (such as deliberation) than those higher levels to the lower levels - an effect enhanced by 
evolution's structure-preserving properties, including the preservation of structure that evolved in 
the absence of deliberation.  Any design possibilities that first opened up with the appearance of 
Homo sapiens sapiens remain unexploited because Homo sapiens sapiens has only existed for 50,000-
100,000 years; this is enough time to select among variances in quantitative tendencies, but not really 
enough time to construct complex functional adaptation.  Since only Homo sapiens sapiens in its most 
modern form is known to engage in computer programming, this may explain why we do not yet 
have the capacity to reprogram our own neurons (said with tongue firmly in cheek, but there's still a 
grain of truth).  And evolution is extremely conservative when it comes to wholesale revision of 
architectures; the homeotic genes controlling the embryonic differentiation of the forebrain, 
midbrain, and hindbrain have identifiable homologues in the developing head of the Drosophila fly(!) 
[Holland92].  

Evolution never refactors its code.  It is far easier for evolution to stumble over a thousand 
individual optimizations than for evolution to stumble over two simultaneous changes which are 
together beneficial and separately harmful.  The genetic code that specifies the mapping between 
codons (a codon is three DNA bases) and the 20 amino acids is inefficient; it maps 64 possible 
codons to 20 amino acids plus the stop code.  Why hasn't evolution shifted one of the currently 
redundant codons to a new amino acid, thus expanding the range of possible proteins?  Because for 
any complex organism, the smallest change to the behavior of DNA - the lowest level of genetic 
organization - would destroy virtually all higher levels of adaptive complexity, unless the change 



 

were accompanied by millions of other simultaneous changes throughout the genome to shift every 
suddenly-nonstandard codon to one of its former equivalents.  Evolution simply cannot handle 
simultaneous dependencies, unless individual changes can be deployed incrementally, or multiple 
phenotypical effects occur as the consequence of a single genetic change.  For humans, planning 
coordinated changes is routine; for evolution, impossible.  Evolution is hit with an enormous 
discount rate when exchanging the paper currency of incremental optimization for the hard coin of 
complex design.  

We should expect the human design to incorporate an intimidatingly huge number of simple 
functional optimizations.  But it is also understandable if there are deficits in the higher 
design.  While the higher levels of organization (including deliberation) have emerged from the 
lower levels and hence are fairly well adapted to them, the lower levels of organization are not as 
adapted to the existence of deliberate intelligence.  Humans were constructed by accretive 
evolutionary processes, moving from very complex nongeneral intelligence to very complex general 
intelligence, with deliberation the last layer of icing on the cake.  

Can we exchange the hard coin of complex design for the paper currency of low-level 
optimization?  "Optimizing compilers" are an obvious step but a tiny one; program optimization 
makes programs faster but exerts no design pressure for better functional organization, even for 
simple functions of the sort easily optimized by evolution.  Directed evolution, used on modular 
subtasks with clearly defined performance metrics, would be a somewhat larger step.  But even 
directed evolution is still the degenerate case of design-and-test where individual steps are 
unintelligent.  We are, by assumption, building an AI.  Why use unintelligent design-and-test?  

Admittedly, there is a chicken-and-egg limit on relying on an AI's intelligence to help build an 
AI.  Until a stably functioning cognitive supersystem is achieved, only the nondeliberative 
intelligence exhibited by pieces of the system will be available.  Even after the achievement of a 
functioning supersystem - a heroic feat in itself - the intelligence exhibited by this supersystem will 
initially be very weak.  The weaker an AI's intelligence, the less ability the AI will show in 
understanding complex holonic systems.  The weaker an AI's abilities at holonic design, the smaller 
the parts of itself that the AI will be able to understand.  At whatever time the AI finally becomes 
smart enough to participate in its own creation, the AI will initially need to concentrate on 
improving small parts of itself with simple and clear-cut performance metrics supplied by the 
programmers.  This is not a special case of a stupid AI trying to understand itself, but a special case 
of a stupid AI trying to understand any complex holonic system; when the AI is "young" it is likely 
to be limited to understanding simple elements of a system, or small organizations of elements, and 
only where clear-cut goal contexts exist (probably programmer-explained).  But even a primitive 
holonic design capability could cover a human gap; we don't like fiddling around with little things 
because we get bored, and we lack the ability to trade our massive parallelized power on complex 
problems for greater serial speed on simple problems.  Similarly, it would be unhealthy (would result 
in AI pathologies) for human programming abilities to play a permanent role in learning or 
optimizing concept kernels - but at the points where interference seems tempting, it is perfectly 
acceptable for the AI's deliberative processes to play a role, if the AI has advanced that far.  

Human intelligence, created by evolution, is characterized by evolution's design signature.  The vast 
majority of our genetic history took place in the absence of deliberative intelligence; our older 
cognitive systems are poorly adapted to the possibilities inherent in deliberation.  Evolution has 



 

applied vast design pressures to us but has done so very unevenly; evolution's design pressures are 
filtered through an unusual methodology that works far better for hand-massaging code than for 
refactoring program architectures.  

Now imagine a mind built in its own presence by intelligent designers, beginning from primitive and 
awkward subsystems that nonetheless form a complete supersystem.  Imagine a development 
process in which the elaboration and occasional refactoring of the subsystems can coopt any degree 
of intelligence, however small, exhibited by the supersystem.  The result would be a fundamentally 
different design signature, and a new approach to Artificial Intelligence which I call seed AI.  

A seed AI is an AI designed for self-understanding, self-modification, and recursive self-
improvement.  This has implications both for the functional architectures needed to achieve 
primitive intelligence, and for the later development of the AI if and when its holonic self-
understanding begins to improve.  Seed AI is not a workaround that avoids the challenge of general 
intelligence by bootstrapping from an unintelligent core; seed AI only begins to yield benefits once 
there is some degree of available intelligence to be utilized.  The later consequences of seed AI (such 
as true recursive self-improvement) only show up after the AI has achieved significant holonic 
understanding and general intelligence.  The bulk of this paper, Part II, describes the general 
intelligence that is prerequisite to seed AI; Part III assumes some degree of success in constructing 
general intelligence and asks what may happen afterward.  This may seem like hubris, but there are 
interesting things to be learned thereby, some of which imply design considerations for earlier 
architecture.  

3.1: Advantages of minds-in-general 

From the standpoint of computer science it may seem like breathtaking audacity if I dare to predict 
any advantages for AIs in advance of their construction, given past failures.  But from the 
standpoint of evolutionary psychology, the human mind has surprising flaws to match its surprising 
strengths.  If discussing the potential advantages of "AIs" strikes you as too audacious, then consider 
what follows, not as discussing the potential advantages of "AIs", but as discussing the potential 
advantages of minds in general relative to humans.  One may then consider separately the audacity 
involved in claiming that a given AI approach can achieve one of these advantages, or that it can be 
done in less than fifty years.  

Humans definitely possess the following advantages, relative to current AIs:  

• We are smart, flexible, generally intelligent organisms with an enormous base of evolved 
complexity, years of real-world experience, and  1014 parallelized synapses, and current AIs 
are not.  

Humans probably possess the following advantages, relative to intelligences developed by humans 
on foreseeable extensions of current hardware:  

• Considering each synaptic signal as roughly equivalent to a floating-point operation, the raw 
computational power of a human is enormously in excess of any current supercomputer or 
clustered computing system, although Moore's Law continues to eat up this ground 
[Moravec98].  



 

• Human neural hardware - the wetware layer - offers built-in support for operations such as 
pattern recognition, pattern completion, optimization for recurring problems, et cetera; this 
support was added from below, taking advantage of microbiological features of neurons, and 
could be enormously expensive to simulate computationally to the same degree of ubiquity.  

• With respect to the holonically simpler levels of the system, the total amount of "design 
pressure" exerted by evolution over time is probably considerably in excess of the design 
pressure that a reasonably-sized programming team could expect to personally exert.  

• Humans have an extended history as intelligences; we are proven software.  

Current computer programs definitely possess these mutually synergetic advantages relative to 
humans:  

• Computer programs can perform highly repetitive tasks without boredom.  
• Computer programs can execute complex extended tasks without making that class of 

human errors caused by distraction or short-term memory overflow in abstract deliberation.  
• Computer hardware can perform extended sequences of simple steps at much greater serial 

speeds than human abstract deliberation or even human 200Hz neurons.  
• Computer programs are fully configurable by the general intelligences called 

humans.  (Evolution, the designer of humans, cannot invoke general intelligence.)  

These advantages will not necessarily carry over to real AI.  A real AI is not a computer program any 
more than a human is a cell.  The relevant complexity exists at a much higher layer of organization, 
and it would be inappropriate to generalize stereotypical characteristics of computers to real AIs, just 
as it would be inappropriate to generalize the stereotypical characteristics of amoebas to modern-day 
humans.  One might say that a real AI consumes computing power but is not a computer.  This basic 
distinction has been confused by many cases in which the label "AI" has been applied to constructs 
that turn out to be only computer programs; but we should still expect the distinction to hold true of 
real AI, when and if achieved.  

The potential cognitive advantages of minds-in-general, relative to human minds, probably include:  

• New sensory modalities.  Human programmers, lacking a sensory modality for assembly 
language, are stuck with abstract reasoning plus compilers.  We are not entirely helpless, even 
this far outside our ancestral environment - but the traditional fragility of computer 
programs bears witness to our awkwardness.  Minds-in-general may be able to exceed 
human programming ability with relatively primitive general intelligence, given a sensory 
modality for code.  

• Blending-over of deliberative and automatic processes.  Human wetware has very poor support for the 
realtime diversion of processing power from one subsystem to another.  Furthermore, a 
computer can burn serial speed to generate parallel power but neurons cannot do the 
reverse.  Minds-in-general may be able to carry out an uncomplicated, relatively uncreative 
track of deliberate thought using simplified mental processes that run at higher speeds - an 
idiom that blurs the line between "deliberate" and "algorithmic" cognition.  Another instance 
of the blurring line is coopting deliberation into processes that are algorithmic in humans; 
for example, minds-in-general may choose to make use of top-level intelligence in forming 
and encoding the concept kernels of categories.  Finally, a sufficiently intelligent AI might be 
able to incorporate de novo programmatic functions into deliberative processes - as if Gary 



 

Kasparov36 could interface his brain to a computer and write search trees to contribute to his 
intuitive perception of a chessboard.  

• Better support for introspective perception and manipulation.  The comparatively poor support of the 
human architecture for low-level introspection is most apparent in the extreme case of 
modifying code; we can think thoughts about thoughts, but not thoughts about individual 
neurons.  However, other cross-level introspections are also closed to us.  We lack the ability 
to introspect on concept kernels, focus-of-attention allocation, sequiturs in the thought 
process, memory formation, skill reinforcement, et cetera; we lack the ability to 
introspectively notice, induce beliefs about, or take deliberate actions in these domains.  

• The ability to add and absorb new hardware.  The human brain is instantiated with a species-
typical upper limit on computing power and loses neurons as it ages.  In the computer 
industry, computing power continually becomes exponentially cheaper, and serial speeds 
exponentially faster, with sufficient regularity that "Moore's Law" [Moore97] is said to 
govern its progress.  Nor is an AI project limited to waiting for Moore's Law; an AI project 
that displays an important result may conceivably receive new funding which enables the 
project to buy a much larger clustered system (or rent a larger computing grid), perhaps 
allowing the AI to absorb hundreds of times as much computing power.  By comparison, 
the 5-million-year transition from Australopithecus to Homo sapiens sapiens involved a tripling of 
cranial capacity relative to body size, and a further doubling of prefrontal volume relative to 
the expected prefrontal volume for a primate with a brain our size, for a total sixfold 
increase in prefrontal capacity relative to primates [Deacon90].  At 18 months per doubling, 
it requires 3.9 years for Moore's Law to cover this much ground.  Even granted that 
intelligence is more software than hardware, this is still impressive.  

• Agglomerativity.  An advanced AI is likely to be able to communicate with other AIs at much 
higher bandwidth than humans communicate with other humans - including sharing of 
thoughts, memories, and skills, in their underlying cognitive representations.  An advanced 
AI may also choose to internally employ multithreaded thought processes to simulate 
different points of view.  The traditional hard distinction between "groups" and "individuals" 
may be a special case of human cognition rather than a property of minds-in-general.  It is 
even possible that no one project would ever choose to split up available hardware among 
more than one AI.  Much is said about the benefits of cooperation between humans, but this 
is because there is a species limit on individual brainpower.  We solve difficult problems 
using many humans because we cannot solve difficult problems using one big human.  Six 
humans have a fair advantage relative to one human, but one human has a tremendous 
advantage relative to six chimpanzees.  

• Hardware that has different, but still powerful, advantages.  Current computing systems lack good 
built-in support for biological neural functions such as automatic optimization, pattern 
completion, massive parallelism, etc.  However, the bottom layer of a computer system is 
well-suited to operations such as reflectivity, execution traces, lossless serialization, lossless 
pattern transformations, very-high-precision quantitative calculations, and algorithms which 
involve iteration, recursion, and extended complex branching.  Also in this category, but 
important enough to deserve its own section, is:  

• Massive serialism:  Different 'limiting speed' for simple cognitive processes.  No matter how simple or 
computationally inexpensive, the speed of a human cognitive process is bounded by the 
200Hz limiting speed of spike trains in the underlying neurons.  Modern computer chips can 
execute billions of sequential steps per second.  Even if an AI must "burn" this serial speed to 
imitate parallelism, simple (routine, noncreative, nonparallel) deliberation might be carried 
out substantially (orders of magnitude) faster than more computationally intensive thought 



 

processes.  If enough hardware is available to an AI, or if an AI is sufficiently optimized, it is 
possible that even the AI's full intelligence may run substantially faster than human 
deliberation.  

• Freedom from evolutionary misoptimizations.  The term "misoptimization" here indicates an 
evolved feature that was adaptive for inclusive reproductive fitness in the ancestral 
environment, but which today conflicts with the goals professed by modern-day humans.  If 
we could modify our own source code, we would eat Hershey's lettuce bars, enjoy our stays 
on the treadmill, and use a volume control on "boredom" at tax time.  

• Everything evolution just didn't think of.  This catchall category is the flip side of the human 
advantage of "tested software" - humans aren't necessarily good software, just old 
software.  Evolution cannot create design improvements which surmount simultaneous 
dependencies unless there exists an incremental path, and even then will not execute those 
design improvements unless that particular incremental path happens to be adaptive for 
other reasons.  Evolution exhibits no predictive foresight and is strongly constrained by the 
need to preserve existing complexity.  Human programmers are free to be creative.  

• Recursive self-enhancement.  If a seed AI can improve itself, each local improvement to a design 
feature means that the AI is now partially the source of that feature, in partnership with the 
original programmers.  Improvements to the AI are now improvements to the source of the 
feature, and may thus trigger further improvement in that feature.  Similarly, where the seed 
AI idiom means that a cognitive talent coopts a domain competency in internal 
manipulations, improvements to intelligence may improve the domain competency and 
thereby improve the cognitive talent.  From a broad perspective, a mind-in-general's self-
improvements may result in a higher level of intelligence and thus an increased ability to 
originate new self-improvements.  

3.2: Recursive self-enhancement 

Fully recursive self-enhancement is a potential advantage of minds-in-general that has no analogue 
in nature - not just no analogue in human intelligence, but no analogue in any known process.  Since 
the divergence of the hominid family within the primate order, further developments have occurred 
at an accelerating pace - but this is not because the character of the evolutionary process changed or 
became "smarter"; successive adaptations for intelligence and language opened up new design 
possibilities and also tended to increase the selection pressures for intelligence and 
language.  Similarly, the exponentially accelerating increase of cultural knowledge in Homo sapiens 
sapiens was triggered by an underlying change in the human brain, but has not itself had time to 
create any significant changes in the human brain.  Once Homo sapiens sapiens arose, the subsequent 
runaway acceleration of cultural knowledge took place with essentially constant brainware.  The 
exponential increase of culture occurs because acquiring new knowledge makes it easier to acquire 
more knowledge.  

The accelerating development of the hominid family and the exponential increase in human culture 
are both instances of weakly self-improving processes, characterized by an externally constant process 
(evolution, modern human brains) acting on a complexity pool (hominid genes, cultural knowledge) 
whose elements interact synergetically.  If we divide the process into an improver and a content base, 
then weakly self-improving processes are characterized by an external improving process with 
roughly constant characteristic intelligence, and a content base within which positive feedback takes 
place under the dynamics imposed by the external process.  



 

If a seed AI begins to improve itself, this will mark the beginning of the AI's self-
encapsulation.  Whatever component the AI improves will no longer be caused entirely by humans; the 
cause of that component will become, at least in part, the AI.  Any improvement to the AI will be an 
improvement to the cause of a component of the AI.  If the AI is improved further - either by the 
external programmers, or by internal self-enhancement - the AI may have a chance to re-improve 
that component.  That is, any improvement to the AI's global intelligence may indirectly result in the 
AI improving local components.  This secondary enhancement does not necessarily enable the AI to 
make a further, tertiary round of improvements.  If only a few small components have been self-
encapsulated, then secondary self-enhancement effects are likely to be small, not on the same order 
as improvements made by the human programmers.  

If computational subsystems give rise to cognitive talents, and cognitive talents plus acquired 
expertise give rise to domain competencies, then self-improvement is a means by which domain 
competencies can wrap around and improve computational subsystems, just as the seed AI idiom of 
coopting deliberative functions into cognition enables improvements in domain competencies to 
wrap around and improve cognitive talents, and the ordinary idiom of intelligent learning enables 
domain competencies to wrap around and improve acquired expertise37.  The degree to which 
domain competencies improve underlying processes will depend on the AI's degree of advancement; 
successively more advanced intelligence is required to improve expertise, cognitive talents, and 
computational subsystems.  The degree to which an improvement in intelligence cascades into 
further improvements will be determined by how much self-encapsulation has already taken place 
on different levels of the system.  

A seed AI is a strongly self-improving process, characterized by improvements to the content base that 
exert direct positive feedback on the intelligence of the underlying improving process.  The 
exponential surge of human cultural knowledge was driven by the action of an already-powerful but 
constant force, human intelligence, upon a synergetic content base of cultural knowledge.  Since 
strong self-improvement in seed AI involves an initially very weak but improving intelligence, it is 
not possible to conclude from analogies with human cultural progress that strongly recursive self-
improvement will obey an exponential lower bound during early stages, nor that it will obey an 
exponential upper bound during later stages.  Strong self-improvement is a mixed blessing in 
development.  During earlier epochs of seed AI, the dual process of programmer improvement and 
self-improvement probably sums to a process entirely dominated by the human programmers.  We 
cannot rely on exponential bootstrapping from an unintelligent core.  However, we may be able to 
achieve powerful results by bootstrapping from an intelligent core, if and when such a core is 
achieved.  Recursive self-improvement is a consequence of seed AI, not a cheap way to achieve AI.  

It is possible that self-improvement will become cognitively significant relatively early in 
development, but the wraparound of domain competencies to improve expertise, cognition, and 
subsystems does not imply strong effects from recursive self-improvement.  Precision in discussing 
seed AI trajectories requires distinguishing between epochs for holonic understanding, epochs for 
programmer-dominated and AI-dominated development, epochs for recursive and nonrecursive 
self-improvement, and epochs for overall intelligence.  

(Readers averse to advance discussion of sophisticated AI may consider these epochs as referring to 
minds-in-general that possess physical access to their own code and some degree of general 



 

intelligence with which to manipulate it; the rationale for distinguishing between epochs may be 
considered separately from the audacity of suggesting that AI can progress to any given epoch.)  

• Epochs for holonic understanding and holonic programming:  
o First epoch:  The AI can transform code in ways that do not affect the algorithm 

implemented.  ("Understanding" on the order of an optimizing compiler; i.e., not 
"understanding" in any real sense.)  

o Second epoch:  The AI can transform algorithms in ways that fit simple abstract 
beliefs about the design purposes of code.  That is, the AI would understand what a 
stack implemented as a linked list and a stack implemented as an array have in 
common.  (Note that this is already out of range of current AI, at least if you want 
the AI to figure it out on its own.)  

o Third epoch:  The AI can draw a holonic line from simple internal metrics of cognitive 
usefulness (how fast a concept is cued, the usefulness of the concept returned) to 
specific algorithms.  Consequently the AI would have the theoretical capability to 
invent and test new algorithms.  This does not mean the AI would have the ability to 
invent good algorithms or better algorithms, just that invention in this domain would 
be theoretically possible.  (An AI's theoretical capacity for invention does not imply 
capacity for improvement over and above the programmers' efforts.  This is 
determined by relative domain competencies and by relative effort expended at a 
given focal point.)  

o Fourth epoch:  The AI has a concept of "intelligence" as the final product of a 
continuous holonic supersystem.  The AI can draw a continuous line from (a) its 
abstract understanding of intelligence to (b) its introspective understanding of 
cognition to (c) its understanding of source code and stored data.  The AI would be 
able to invent an algorithm or cognitive process that contributes to intelligence in a 
novel way and integrate that process into the system.  (Again, this does not 
automatically imply that the AI's inventions are improvements relative to existing 
processes.)  

• Epochs for sparse, continuous, and recursive self-improvement:  
o First epoch:  The AI has a limited set of rigid routines which it applies 

uniformly.  Once all visible opportunities are exhausted, the routines are used 
up.  This is essentially analogous to the externally driven improvement of an 
optimizing compiler.  An optimizing compiler may make a large number of 
improvements, but they are not self-improvements, and they are not design 
improvements.  An optimizing compiler tweaks assembly language but leaves the 
program constant.  

o Second epoch:  The cognitive processes which create improvements have 
characteristic complexity on the order of a classical search tree, rather than on the 
order of an optimizing compiler.  Sufficient investments of computing power can 
sometimes yield extra improvements, but it is essentially an exponential investment 
for a linear improvement, and no matter how much computing power is invested, 
the total kind of improvements conceivable are limited.  

o Third epoch:  Cognitive complexity in the AI's domain competency for 
programming is high enough that at any given point there is a large number of visible 
possibilities for complex improvements, albeit perhaps minor improvements.  The 
AI usually does not exhaust all visible opportunities before the programmers 



 

improve the AI enough to make new improvements visible.  However, it is only 
programmer-driven improvements in intelligence which are powerful enough to 
open up new volumes of the design space.  

o Fourth epoch:  Self-improvements sometimes result in genuine improvements to 
"smartness", "creativity", or "holonic understanding", enough to open up a new 
volume of the design space and make new possible improvements visible.  

• Epochs for relative human-driven and AI-driven improvement:  
o First epoch: The AI can make optimizations at most on the order of an optimizing 

compiler, and cannot make design improvements or increase functional 
complexity.  The combination of AI and programmer is not noticeably more 
effective than a programmer armed with an ordinary optimizing compiler.  

o Second epoch:  The AI can understand a small handful of components and make 
improvements to them, but the total amount of AI-driven improvement is small by 
comparison with programmer-driven development.  Sufficiently major programmer 
improvements do very occasionally trigger secondary improvements.  The total 
amount of work done by the AI on its own subsystems serves only as a measurement 
of progress and does not significantly accelerate work on AI programming.  

o Third epoch:  AI-driven improvement is significant, but development is "strongly" 
programmer-dominated in the sense that overall systemic progress is driven almost 
entirely by the creativity of the programmers.  The AI may have taken over some 
significant portion of the work from the programmers.  The AI's domain 
competencies for programming may play a critical role in the AI's continued 
functioning.  

o Fourth epoch:  AI-driven improvement is significant, but development is "weakly" 
programmer-dominated.  AI-driven improvements and programmer-driven 
improvements are of roughly the same kind, but the programmers are better at 
it.  Alternatively, the programmers have more subjective time in which to make 
improvements, due to the number of programmers or the slowness of the AI.  

• Epochs for overall intelligence:  
o Tool-level AI:  The AI's behaviors are immediately and directly specified by the 

programmers, or the AI "learns" in a single domain using prespecified learning 
algorithms.  (In my opinion, tool-level AI as an alleged step on the path to more 
complex AI is highly overrated.)  

o Prehuman AI:  The AI's intelligence is not a significant subset of human 
intelligence.  Nonetheless, the AI is a cognitive supersystem, with some subsystems 
we would recognize, and at least some mind-like behaviors.  A toaster oven does not 
qualify as a "prehuman chef", but a general kitchen robot might do so.  

o Infrahuman AI:  The AI's intelligence is, overall, of the same basic character as 
human intelligence, but substantially inferior.  The AI may excel in a few domains 
where it possesses new sensory modalities or other brainware advantages not 
available to humans.  I believe that a worthwhile test of infrahumanity is whether 
humans talking to the AI recognize a mind on the other end.  (An AI that lacks even 
a primitive ability to communicate with and model external minds, and cannot be 
taught to do so, does not qualify as infrahuman.)  

It should again be emphasized that this entire discussion assumes that the problem of building a 
general intelligence is solvable.  Without significant existing intelligence an alleged "AI" will remain 



 

permanently stuck in the first epoch of holonic programming - it will remain nothing more than an 
optimizing compiler.  It is true that so far attempts at computer-based intelligence have failed, and 
perhaps there is a barrier which states that while 750 megabytes of DNA can specify physical 
systems which learn, reason, and display general intelligence, no amount of human design can do the 
same.  

But if no such barrier exists - if it is possible for an artificial system to match DNA and display 
human-equivalent general intelligence - then it seems very probable that seed AI is achievable as 
well.  It would be the height of biological chauvinism to assert that, while it is possible for humans to 
build an AI and improve this AI to the point of roughly human-equivalent general intelligence, this 
same human-equivalent AI can never master the (humanly solved) programming problem of making 
improvements to the AI's source code.  

Furthermore, the above statement misstates the likely interrelation of the epochs.  An AI does not 
need to wait for full human-equivalence to begin improving on the programmer's work.  An 
optimizing compiler can "improve" over human work by expending greater relative effort on the 
assembly-language level.  That is, an optimizing compiler uses the programmatic advantages of greater 
serial speed and immunity to boredom to apply much greater design pressures to the assembly-language 
level than a human could exert in equal time.  Even an optimizing compiler might fail to match a 
human at hand-massaging a small chunk of time-critical assembly language.  But, at least in today's 
programming environments, humans no longer hand-massage most code - in part because the task is 
best left to optimizing compilers, and in part because it's extremely boring and wouldn't yield much 
benefit relative to making further high-level improvements.  A sufficiently advanced AI that takes 
advantage of massive serialism and freedom from evolutionary misoptimizations may be able to apply massive 
design pressures to higher holonic levels of the system.  

Even at our best, humans are not very good programmers; programming is not a task commonly 
encountered in the ancestral environment.  A human programmer is metaphorically a blind painter - 
not just a blind painter, but a painter entirely lacking a visual cortex.  We create our programs like an 
artist drawing one pixel at a time, and our programs are fragile as a consequence.  If the AI's human 
programmers can master the essential design pattern of sensory modalities, they can gift the AI with 
a sensory modality for codelike structures.  Such a modality might perceptually interpret: a simplified 
interpreted language used to tutor basic concepts; any internal procedural languages used by 
cognitive processes; the programming language in which the AI's code level is written; and finally 
the native machine code of the AI's hardware.  An AI that takes advantage of a codic modality may 
not need to wait for human-equivalent general intelligence to beat a human in the specific domain 
competency of programming.  Informally, an AI is native to the world of programming, and a human is 
not.  

This leads inevitably to the question of how much programming ability would be exhibited by a seed 
AI with human-equivalent general intelligence plus a codic modality.  Unfortunately, this leads into 
territory that is generally considered taboo within the field of AI.  Some readers may have noted a 
visible incompleteness in the above list of seed AI epochs; for example, the last stage listed for 
human-driven and AI-driven improvement is "weak domination" of the improvement process by 
human programmers (the AI and the programmers make the same kind of improvements, but the 
programmers make more improvements than the AI).  The obvious succeeding epoch is one in 
which AI-driven development roughly equals human development, and the epoch after that one in 



 

which AI-driven development exceeds human-driven development.  Similarly, the discussion of 
epochs for recursive self-improvement stops at the point where AI-driven improvement sometimes 
opens up new portions of the opportunity landscape, but does not discuss the possibility of open-
ended self-improvement: a point beyond which progress can continue in the absence of human 
programmers, so that by the time the AI uses up all the improvements visible at a given level, that 
improvement is enough to "climb the next step of the intelligence ladder" and make a new set of 
improvements visible.  The epochs for overall intelligence define tool-level, prehuman, and 
infrahuman AI, but do not define human-equivalence or transhumanity.  

3.3: Infrahumanity and transhumanity: "Human-equivalence" as anthropocentrism 

It is interesting to contrast the separate perspectives of modern-day Artificial Intelligence researchers 
and modern-day evolutionary psychologists with respect to the particular level of intelligence 
exhibited by Homo sapiens sapiens.  Modern-day AI researchers are strongly reluctant to discuss human 
equivalence, let alone what might lie beyond it, as a result of past claims for "human equivalence" 
that fell short.  Even among those rare AI researchers who are still willing to discuss general 
cognition, the attitude appears to be:  "First we'll achieve general cognition, then we'll talk human-
equivalence.  As for transhumanity, forget it."  

In contrast, modern-day evolutionary theorists are strongly trained against Panglossian or 
anthropocentric views of evolution, i.e., those in which humanity occupies any special or best place 
in evolution.  Here it is socially unacceptable to suggest that Homo sapiens sapiens represents cognition 
in an optimal or maximally developed form; in the field of evolutionary psychology, the overhanging 
past is one of Panglossian optimism.  Rather than modeling the primate order and hominid family as 
evolving toward modern-day humanity, evolutionary psychologists try to model the hominid family as 
evolving somewhere, which then decided to call itself "humanity".  (This view is beautifully 
explicated in Terrence Deacon's "The Symbolic Species" [Deacon97].)  Looking back on the history 
of the hominid family and the human line, there is no reason to believe that evolution has hit a hard 
upper limit. Homo sapiens has existed for a short time by comparison with the immediately preceding 
species, Homo erectus.  We look back on our evolutionary history from this vantage point, not because 
evolution stopped at this point, but because the subspecies Homo sapiens sapiens is the very first 
elaboration of primate cognition to cross over the minimum line that supports rapid cultural growth 
and the development of evolutionary psychologists.  We observe human-level intelligence in our 
vicinity, not because human intelligence is optimal or because it represents a developmental limit, 
but because of the Anthropic Principle; we are the first intelligences smart enough to look 
around.  Should basic design limits on intelligence exist, it would be an astonishing coincidence if 
they centered on the human level.  

Strictly speaking, the attitudes of AI and evolutionary psychology are not irreconcilable.  One could 
hold that achieving general cognition will be extremely hard and that this constitutes the immediate 
research challenge, while simultaneously holding that once AI is achieved, only ungrounded 
anthropocentrism would predict that AIs will develop to a human level and then stop.  This hybrid 
position is the actual stance I have tried to maintain throughout this paper - for example, by 
decoupling discussion of developmental epochs and advantages of minds-in-general from the 
audacious question of whether AI can achieve a given epoch or advantage.  



 

But it would be silly to pretend that the tremendous difficulty of achieving general cognition licenses 
us to sweep its enormous consequences under the rug.  Despite AI's glacial slowness by comparison 
with more tractable research areas, Artificial Intelligence is still improving at an enormously faster rate 
than human intelligence.  A human may contain millions or hundreds of millions of times as much 
processing power as a personal computer circa 2002, but computing power per dollar is (still) 
doubling every eighteen months, and human brainpower is not.  

Many have speculated whether the development of human-equivalent AI, however and whenever it 
occurs, will be shortly followed by the development of transhuman AI [Moravec88]; [Vinge93]; 
[Minsky94]; [Kurzweil99]; [Hofstadter00]; [Hawking01].  Once AI exists it can develop in a number 
of different ways; for an AI to develop to the point of human-equivalence and then remain at the 
point of human-equivalence for an extended period would require that all liberties be simultaneously 
blocked38 at exactly the level which happens to be occupied by Homo sapiens sapiens.  This is too much 
coincidence.  Again, we observe Homo sapiens sapiens intelligence in our vicinity, not because Homo 
sapiens sapiens represents a basic limit, but because Homo sapiens sapiens is the very first hominid 
subspecies to cross the minimum line that permits the development of evolutionary psychologists.  

Even if this were not the case - if, for example, we were now looking back on an unusually long 
period of stagnation for Homo sapiens - it would still be an unlicensed conclusion that the 
fundamental design bounds which hold for evolution acting on neurons would hold for programmers 
acting on transistors.  Given the different design methods and different hardware, it would again be 
too much of a coincidence.  

This holds doubly true for seed AI.  The behavior of a strongly self-improving process (a mind with 
access to its own source code) is not the same as the behavior of a weakly self-improving process 
(evolution improving humans, humans improving knowledge).  The ladder question for recursive 
self-improvement - whether climbing one rung yields a vantage point from which enough 
opportunities are visible that they suffice to reach the next rung - means that effects need not be 
proportional to causes.  The question is not how much of an effect any given improvement has, but 
rather how much of an effect the improvement plus further triggered improvements and their 
triggered improvements have.  It is literally a domino effect - the universal metaphor for small 
causes with disproportionate results.  Our instincts for system behaviors may be enough to give us 
an intuitive feel for the results of any single improvement, but in this case we are asking not about 
the fall of a single domino, but rather about how the dominos are arranged.  We are asking whether 
the tipping of one domino is likely to result in an isolated fall, two isolated falls, a small handful of 
toppled dominos, or whether it will knock over the entire chain.  

If I may be permitted to adopt the antipolarity of "conservatism" - i.e., asking how soon things could 
conceivably happen, rather than how late - then I must observe that we have no idea where the point 
of open-ended self-improvement is located, and furthermore, no idea how fast progress will occur 
after this point is reached.  Lest we overestimate the total amount of intelligence required, it should 
be noted that nondeliberate evolution did eventually stumble across general intelligence; it just took 
a very long time.  We do not know how much improvement over evolution's incremental steps is 
required for a strongly self-improving system to knock over dominos of sufficient size that each one 
triggers the next domino.  Currently, I believe the best strategy for AI development is to try for 
general cognition as a necessary prerequisite of achieving the domino effect.  But in theory, general 
cognition might not be required.  Evolution managed without it.  (In a sense this is disturbing, since, 



 

while I can see how it would be theoretically possible to bootstrap from a nondeliberative core, I 
cannot think of a way to place such a nondeliberative system within the human moral frame of 
reference.)  

It is conceptually possible that a basic bound rules out all improvement of effective intelligence past 
our current level, but we have no evidence supporting such a bound.  I find it difficult to credit that 
a bound holding for minds in general on all physical substrates coincidentally limits intelligence to 
the exact level of the very first hominid subspecies to evolve to the point of developing computer 
scientists.  I find it equally hard to credit bounds that limit strongly self-improving processes to the 
characteristic speed and behavior of weakly self-improving processes.  "Human equivalence", 
commonly held up as the great unattainable challenge of AI, is a chimera - in the sense of being both 
a "mythical creature" and an "awkward hybrid".  Infrahuman AI and transhuman AI are both 
plausible as self-consistent durable entities.  Human-equivalent AI is not.  

Given the tremendous architectural and substrate differences between humans and AIs, and the 
different expected cognitive advantages, there are no current grounds for depicting an AI that strikes 
an anthropomorphic balance of domain competencies.  Given the difference between weakly 
recursive self-improvement and strongly recursive self-improvement; given the ladder effect and 
domino effect in self-enhancement; given the different limiting subjective rates of neurons and 
transistors; given the potential of minds-in-general to expand hardware; and given that evolutionary 
history provides no grounds for theorizing that the Homo sapiens sapiens intelligence range represents 
a special slow zone or limiting point with respect to the development of cognitive systems; therefore, 
there are no current grounds for expecting AI to spend an extended period in the Homo sapiens 
sapiens range of general intelligence.  Homo sapiens sapiens is not the center of the cognitive universe; 
we are a noncentral special case.  

Under standard folk psychology, whether a task is easy or hard or extremely hard does not change 
the default assumption that people undertaking a task do so because they expect positive 
consequences for success.  AI researchers continue to try and move humanity closer to achieving 
AI.  However near or distant that goal, AI's critics are licensed under folk psychology to conclude 
that these researchers believe AI to be desirable.  AI's critics may legitimately ask for an immediate 
defense of this belief, whether AI is held to be five years away or fifty.  Although the topic is not 
covered in this paper, I personally pursue general cognition as a means to seed AI, and seed AI as a 
means to transhuman AI, because I believe human civilization will benefit greatly from breaching 
the upper bounds on intelligence that have held for the last fifty thousand years, and furthermore, 
that we are rapidly heading toward the point where we must breach the current upper bounds on 
intelligence for human civilization to survive.  I would not have written a paper on recursively self-
improving minds if I believed that recursively self-improving minds were inherently a bad thing, 
whether I expected construction to take fifty years or fifty thousand.  

Conclusion 

"People are curious about how things began, and especially about the origins of things they 
deem important.  Besides satisfying such curiosity, accounts of origin may acquire broader 
theoretical or practical interest when they go beyond narrating historical accident, to impart 
insight into more enduring forces, tendencies, or sources from which the phenomena of 
interest more generally proceed.  Accounts of evolutionary adaptation do this when they 



 

explain how and why a complex adaptation first arose over time, or how and why it has been 
conserved since then, in terms of selection on heritable variation.  [...]  In such cases, 
evolutionary accounts of origin may provide much of what early Greek thinkers sought in an 
arche, or origin - a unified understanding of something's original formation, source of 
continuing existence, and underlying principle."  
            -- Leonard D. Katz, ed., "Evolutionary Origins of Morality" [Katz00] 

 
On the cover of Douglas Hofstadter's Gödel, Escher, Bach: An Eternal Golden Braid are two trip-lets - 
wooden blocks carved so that three orthogonal spotlights shining through the 3D block cast three 
different 2D shadows - the letters "G", "E", "B".  The trip-let is a metaphor for the way in which a 
deep underlying phenomenon can give rise to a number of different surface phenomena.  It is a 
metaphor about intersecting constraints that give rise to a whole that is deeper than the sum of the 
requirements, the multiplicative and not additive sum.  It is a metaphor for arriving at a solid core by 
asking what casts the shadows, and how the core can be stronger than the shadows by reason of its 
solidity.  (In fact, the trip-let itself could stand as a metaphor for the different metaphors cast by the 
trip-let concept.)  

In seeking the arche of intelligence, I have striven to neither overstate nor understate its 
elegance.  The central shape of cognition is a messy 4D object that casts the thousand subfields of 
cognitive science as 3D shadows.  Using the relative handful of fields with which I have some small 
acquaintance, I have tried to arrive at a central shape which is no more and no less coherent than we 
would expect of evolution as a designer.  

I have used the levels of organization as structural support for the theory, but have tried to avoid 
turning the levels of organization into Aristotelian straitjackets - permitting discussion of "beliefs", 
cognitive content that combines the nature of concept structures and learned complexity; or 
discussion of "sequiturs", brainware adaptations whose function is best understood on the thought 
level.  The levels of organization are visibly pregnant with evolvability and plead to be fit into 
specific accounts of human evolution - but this does not mean that our evolutionary history enacted 
a formal progress through Modalities, Concepts, and Thoughts, with each level finished and 
complete before moving on to the next.  The levels of organization structure the functional 
decomposition of intelligence; they are not in themselves such a decomposition.  Similarly, the levels 
of organization structure accounts of human evolution without being in themselves an account of 
evolution.  We should not say that Thoughts evolved from Concepts; rather, we should consider a 
specific thought-level function and ask which specific concept-level functions are necessary and 
preadaptive for its evolution.  

In building this theory, I have tried to avoid those psychological sources of error that I believe have 
given rise to past failures in AI; physics envy, Aristotelian straitjackets, magical analogies with human 
intelligence, and others too numerous to list.  I have tried to give some explanation of past failures 
of AI, not just in terms of "This is the magic key we were missing all along (take two)", but in terms 
of "This is what the past researchers were looking at when they made the oversimplification, these 
are the psychological forces underlying the initial oversimplification and its subsequent social 
propagation, and this explains the functional consequences of the oversimplification in terms of the 
specific subsequent results as they appeared to a human observer."  Or so I would like to say, but 
alas, I had no room in this paper for such a complete account.  Nonetheless I have tried, not only to 
give an account of some of AI's past failures, but also to give an account of how successive failures 



 

tried and failed to account for past failures.  I have only discussed a few of the best-known and 
most-studied AI pathologies, such as the "symbol grounding problem" and "common-sense 
problem", but in doing so, I have tried to give accounts of their specific effects and specific origins.  

Despite AI's repeated failures, and despite even AI's repeated failed attempts to dig itself out from 
under past failures, AI still has not dug itself in so deep that no possible new theory could dig itself 
out.  If you show that a new theory does not contain a set of causes of failure in past theories - 
where the causes of failure include both surface scientific errors and underlying psychological errors, 
and these causes are together sufficient to account for observed pathologies - then this does not 
prove you have identified all the old causes of failure, or prove that the new theory will succeed, but 
it is sufficient to set the new approach aside from aversive reinforcement on past attempts.  I can't 
promise that DGI will succeed - but I believe that even if DGI is slain, it won't be the AI dragon 
that slays it, but a new and different dragon.  At the least I hope I have shown that, as a new 
approach, DGI-based seed AI is different enough to be worth trying.  

As presented here, the theory of DGI has a great deal of potential for expansion.  To put it less 
kindly, the present paper is far too short.  The paper gives a descriptive rather than a constructive 
account of a functional decomposition of intelligence; the paper tries to show evolvability, but does 
not give a specific account of hominid evolution; the paper analyzes a few examples of past failures 
but does not fully reframe the history of AI.  I particularly regret that the paper fails to give the 
amount of background explanation that is usually considered standard for interdisciplinary 
explanations.  In assembling the pieces of the puzzle, I have not been able to explain each of the 
pieces for those unfamiliar with it.  I have been forced to the opposite extreme.  On more than one 
occasion I have compressed someone else's entire lifework into one sentence and a bibliographic 
reference, treating it as a jigsaw piece to be snapped in without further explanation.  

At this point in the ritual progress of a general theory of cognition, there are two possible paths 
forward.  One can embrace the test of fire in evolutionary psychology, cognitive psychology, and 
neuroscience, and try to show that the proposed new explanation is the most probable explanation 
for previously known evidence, and that it makes useful new predictions.  Or, one can embrace the 
test of fire in Artificial Intelligence and try to build a mind.  I intend to take the latter path as soon as 
my host organization finds funding, but this may subtract from the time available to mend the gaps 
in the present paper.  Hopefully my efforts in this paper will serve to argue that DGI is promising 
enough to be worth the significant funding needed for the acid test of building AI.  

In today's world it is commonly acknowledged that we have a responsibility to discuss the moral and 
ethical questions raised by our work.  I would take this a step farther and say that we not only have a 
responsibility to discuss those questions, but also to arrive at interim answers and guide our actions 
based on those answers - still expecting future improvements to the ethical model, but also willing to 
take action based on the best current answers.  Artificial Intelligence is too profound a matter for us 
to have no better reply to such pointed questions as "Why?" than "Because we can!" or "I've got to 
make a living somehow."  If Homo sapiens sapiens is a noncentral and nonoptimal special case of 
intelligence, then a world full of nothing but Homo sapiens sapiens is not necessarily the happiest world 
we could live in.  For the last fifty thousand years, we've been trying to solve the problems of the 
world with Homo sapiens sapiens intelligence.  We've made a lot of progress, but there are also 
problems that we've hit and bounced.  Maybe it's time to use a bigger hammer.  
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Endnotes 

• 1:  This does not rule out the possibility of discoveries in cognitive science occurring 
through less intentional and more evolutionary means.  For example, a commercial AI 
project with a wide range of customers might begin with a shallow central architecture 
loosely integrating domain-specific functionality across a wide variety of tasks, but later find 
that their research tends to produce specialized internal functionality hinting at a deeper, 
more integrated supersystem architecture.  

• 2:  Adenine triphosphate, the standard unit of currency in the economy of the human 
metabolism.  

• 3:  I cannot think of any plausible way to do this, and do not advocate such an approach.  
• 4:  A phrase due to [Dijkstra68] in "Go To Statement Considered Harmful"; today it 

indicates that a prevalent practice has more penalties than benefits and should be discarded.  
• 5:  Note that "lightbulb" is a basic-level category [Brown58].  "Basic-level" categories tend to lie 

on the highest level at which category members have similar shapes, the highest level at 
which a single mental image can reflect the entire category, the highest level at which a 
person uses similar motor actions for interacting with category members, et cetera 
[Rosch76].  "Chair" is a basic-level category but "furniture" is not; "red" is a basic-level 
category but "scarlet" is not.  Basic-level categories generally have short, compact names, are 
among the first terms learned within a language, and are the easiest to process 
cognitively.  [Lakoff87] cautions against inadvertant generalization from basic-level 
categories to categories in general, noting that most researchers, in trying to think of 
examples of categories, almost always select examples of basic-level categories.  



 

• 6:  I don't know of a specific case of priming tests conducted on the specific word-pair 
"lightbulb" and "fluorescent", but this is a typical example.  

• 7:  "DGI" stands for "Deliberative General Intelligence", the theory of mind presented in 
this paper.  

• 8:  Finke and Schmidt showed that afterimages from mental imagery can recreate the 
McCullough effect.  The McCullough effect is a striking illustration of the selective fatiguing 
of higher-level feature detectors, in which, following the presentation of alternating green 
horizontal and red vertical bars, differently colored afterimages are perceived in the white 
space of a background image depending on whether the background image has horizontal 
black-and-white bars (red afterimage) or vertical black-and-white bars (green 
afterimage).  This is an unusual and counterintuitive visual effect, and not one that a typical 
study volunteer would know about and subconsciously "fake" (as Pylyshyn contends).  

• 9:  The lateral geniculate nucleus is a thalamic body which implements an intermediate stage 
in visual processing between the retina and the visual cortex.  

• 10:  "Interesting" is here used in its idiomatic sense of "extremely hard".  
• 11:  The levels begin with "atoms" rather than "quarks" or "molecules" because the atomic 

level is the highest layer selected from a bounded set of possible elements (ions and isotopes 
notwithstanding).  "Quarks" are omitted from the list of layers because no adaptive 
complexity is involved; evolution exercises no control over how quarks come together to 
form atoms.  

• 12:  Other human modalities include, e.g., proprioception and vestibular coordination.  
• 13:  Environmental complexity of this type is reliably present and is thus "known in 

advance" to the genetic specification, and in some sense can be said to be a constant and 
reliable part of the genetic design.  

• 14:  The term "brainware" is not necessarily anthropomorphic, since the term "brain" can be 
extended to refer to nonbiological minds.  The biology-only equivalent is often half-jokingly 
referred to as wetware, but the term "wetware" should denote the human equivalent of the 
code level, since only neurons and synapses are actually wet.  

• 15:  The statement that each neuron is "potentially" within one clock tick of any other 
neuron is meant as a statement about the genome, not a statement about developmental 
neurology - that is, it would probably require a genetic change to produce a previously 
forbidden connection.  

• 16:  Note that biological neurons can easily implement multiplication as well as addition and 
subtraction [Koch92], plus low- and band-pass filtering, normalization, gain control, 
saturation, amplification, thresholding, and coincidence detection [Koch99].  

• 17:  The striate cortex is also known as "primary visual cortex", "area 17", and "V1".  
• 18:  Deliberative General Intelligence, the theory of mind presented in this paper.  
• 19:  I say "human-like" and not "primate-like" or "mammal-like" because of the possibility 

that the human visual modality has further adaptations that support the use of mental 
imagery in deliberation.  

• 20:  Artificial lighting, which has an "unnatural" spectral power distribution (one that is not 
the weighted sum of the natural basis vectors), can cause objects to appear as a different 
color to the human visual system.  Hence the manufacture and sale of "natural lighting" or 
"full spectrum" light sources.  

• 21:  For one suggested solution, see [Bonmassar97].  
• 22:  This does not imply that GOFAI handles concept-concept relations correctly.  The links 

in a classical "semantic net" are as oversimplified as the nodes.  



 

• 23:  The use of computationally inexpensive cues to determine when more expensive checks 
should be performed.  

• 24:  An algorithm which reduces complex representations to a form that can be more easily 
compared or scanned.  

• 25:  Rather than comparing against each potential match in turn, an algorithm would be used 
which eliminates half the potential matches by asking a question, then eliminates half the 
remaining potential matches by asking a new question pre-optimized against that set, and so 
on until the remaining potential matches are computationally tractable.  Branched sorting of 
this kind could conceivably be implemented by spatial properties of a parallel neural network 
as well.  

• 26:  There is some indication that young humans possess a tendency to count discrete 
physical objects and that this indeed interferes with the ability of human children to count 
groups of groups or count abstract properties [Shipley90].  

• 27:  In animals, experiments with cross-modality numeracy sometimes exhibit surprisingly 
positive results.  For example, rats trained to press lever A on hearing two tones or seeing 
two flashes, and to press lever B on hearing four tones or seeing four flashes, spontaneously 
press lever B on hearing two tones and seeing two flashes [Church84].  This may indicate 
that rats categorize on (approximate) quantities by categorizing on an internal accumulator 
which is cross-modality.  Evolution, however, tends to write much smoother code than 
human programmers; I am speaking now of the likely consequence of a "naive" AI 
programmer setting out to create a numeron-detector feature.  

• 28:  EURISKO was a self-modifying AI that used heuristics to modify heuristics, including 
modification of the heuristics modifying the heuristics.  

• 29:  As described earlier, "holonic" describes the simultaneous application of reductionism 
and holism, in which a single quality is simultaneously a combination of parts and a part of a 
greater whole.  

• 30:  Whether a belief is really more like a concept or more like a thought is a "wrong 
question".  The specific similarities and differences say all there is to say.  The levels of 
organization are aids to understanding, not Aristotelian straitjackets.  

• 31:  "This sentence is false" is properly known as the Eubulides Paradox rather than the 
Epimenides Paradox, but "Epimenides Paradox" seems to have become the standard term.  

• 32:  Of course, writing quality is made up of a number of components and is not a true 
scalar variable.  A more accurate description would be that "writing quality" is the 
summation of a number of other percepts, and that we conceive of this summated quality as 
increasing or decreasing.  Some writing qualities may be definitely less than or greater than 
others, but this does not imply that the complete set of percepts is well-ordered or that the 
percept itself is cognitively implemented by a simple scalar magnitude.  

• 33:  As opposed to the Right Thing.  See the Jargon File entry for "Wrong Thing", 
[Raymond01b].  

• 34:  I believe this is the underlying distinction which [Pearl96] is attempting to model when 
he suggests that agent actions be represented as surgery on a causal graph.  

• 35:  Viewing evolution itself through the lens provided by DGI is just barely possible.  There are 
so many differences as to render the comparison one of "loose analogy" rather than "special 
case".  This is as expected; evolution is not intelligent, although it may sometimes appear so.  

• 36:  Former world champion in chess, beaten by the computer Deep Blue.  
• 37:  It is sometimes objected that an intelligence modifying itself is "circular" and therefore 

impossible.  This strikes me as a complete non sequitur, but even if it were not, the objection 
is still based on the idea of intelligence as an opaque monolithic function.  The character of 



 

the computational subsystems making up intelligence is fundamentally different from the 
character of the high-level intelligence that exists atop the subsystems.  High-level 
intelligence can wrap around to make improvements to the subsystems in their role as 
computational processes without ever directly confronting the allegedly sterile problem of 
"improving itself" - though as said, I see nothing sterile about this.  

• 38:  This is a metaphor from the game Go, where you capture an opponent's group of 
stones by eliminating all adjoining clear spaces, which are known as "liberties".  


